--- a/Nominal/nominal_function_core.ML Mon Jan 09 10:45:12 2012 +0000
+++ b/Nominal/nominal_function_core.ML Mon Jan 16 12:42:47 2012 +0000
@@ -143,14 +143,14 @@
fun mk_eqvt_proof_obligation qs fvar (vs, assms, arg) =
mk_eqvt_at (fvar, arg)
|> curry Logic.list_implies (map prop_of assms)
- |> curry Term.list_all_free vs
+ |> fold_rev (Logic.all o Free) vs
|> fold_rev absfree qs
|> strip_abs_body
fun mk_inv_proof_obligation inv qs fvar (vs, assms, arg) =
mk_inv inv (fvar, arg)
|> curry Logic.list_implies (map prop_of assms)
- |> curry Term.list_all_free vs
+ |> fold_rev (Logic.all o Free) vs
|> fold_rev absfree qs
|> strip_abs_body
@@ -173,7 +173,7 @@
|> fold_rev (curry Logic.mk_implies) invs_obligations_lhs (* nominal *)
|> fold_rev (curry Logic.mk_implies) eqvts_obligations_rhs (* nominal *)
|> fold_rev (curry Logic.mk_implies) eqvts_obligations_lhs (* nominal *)
- |> fold_rev (fn (n,T) => fn b => Term.all T $ Abs(n,T,b)) (qs @ qs')
+ |> fold_rev (fn (n,T) => fn b => Logic.all_const T $ Abs(n,T,b)) (qs @ qs')
|> curry abstract_over fvar
|> curry subst_bound f
end
@@ -535,7 +535,7 @@
val thy = Proof_Context.theory_of ctxt
(* Inductive Hypothesis: !!z. (z,x):R ==> EX!y. (z,y):G *)
- val ihyp = Term.all domT $ Abs ("z", domT,
+ val ihyp = Logic.all_const domT $ Abs ("z", domT,
Logic.mk_implies (HOLogic.mk_Trueprop (R $ Bound 0 $ x),
HOLogic.mk_Trueprop (Const (@{const_name Ex1}, (ranT --> boolT) --> boolT) $
Abs ("y", ranT, G $ Bound 1 $ Bound 0))))
@@ -760,7 +760,7 @@
|> cterm_of thy
(* Inductive Hypothesis: !!z. (z,x):R ==> P z *)
- val ihyp = Term.all domT $ Abs ("z", domT,
+ val ihyp = Logic.all_const domT $ Abs ("z", domT,
Logic.mk_implies (HOLogic.mk_Trueprop (R $ Bound 0 $ x),
HOLogic.mk_Trueprop (P $ Bound 0)))
|> cterm_of thy
@@ -940,7 +940,7 @@
|> cterm_of thy (* "wf R'" *)
(* Inductive Hypothesis: !!z. (z,x):R' ==> z : acc R *)
- val ihyp = Term.all domT $ Abs ("z", domT,
+ val ihyp = Logic.all_const domT $ Abs ("z", domT,
Logic.mk_implies (HOLogic.mk_Trueprop (R' $ Bound 0 $ x),
HOLogic.mk_Trueprop (acc_R $ Bound 0)))
|> cterm_of thy