--- a/Quotient-Paper/Paper.thy Mon Jun 14 09:28:52 2010 +0200
+++ b/Quotient-Paper/Paper.thy Mon Jun 14 10:14:39 2010 +0200
@@ -835,14 +835,15 @@
Otherwise the two terms are applications. There are two cases: If there is a REP/ABS
in the injected theorem we can use the theorem:
- @{thm [display] rep_abs_rsp[no_vars]}
+ @{thm [display, indent=10] rep_abs_rsp[no_vars]}
+ \noindent
and continue the proof.
Otherwise we introduce an appropriate relation between the subterms and continue with
two subgoals using the lemma:
- @{thm [display] apply_rsp[no_vars]}
+ @{thm [display, indent=10] apply_rsp[no_vars]}
*}
@@ -864,7 +865,7 @@
@{thm [display] Quotient_rel_rep[no_vars]}
\item User given preservation theorems, that allow using higher level operations
and containers of types being lifted. An example may be
- @{thm [display] map_prs(1)[no_vars]}
+ @{thm [display] map_prs(1)[of R1 Abs1 Rep1 R2 Abs2 Rep2,no_vars]}
\end{itemize}
Preservation of relations and user given constant preservation lemmas *}
@@ -951,13 +952,15 @@
\begin{itemize}
\item Peter Homeier's package~\cite{Homeier05} (and related work from there)
+
\item John Harrison's one~\cite{harrison-thesis} is the first one to lift theorems
but only first order.
\item PVS~\cite{PVS:Interpretations}
\item MetaPRL~\cite{Nogin02}
- \item Manually defined quotients in Isabelle/HOL Library (Markus's Quotient\_Type,
- Dixon's FSet, \ldots)
+
+% \item Manually defined quotients in Isabelle/HOL Library (Markus's Quotient\_Type,
+% Dixon's FSet, \ldots)
\item Oscar Slotosch defines quotient-type automatically but no
lifting~\cite{Slotosch97}.