--- a/Nominal/ExCoreHaskell.thy Mon Mar 29 17:32:17 2010 +0200
+++ b/Nominal/ExCoreHaskell.thy Mon Mar 29 18:12:54 2010 +0200
@@ -323,7 +323,9 @@
apply (simp add: finb1 finb2 finb3)
done
-lemma strong_inudction_principle:
+thm tkind_ckind_ty_ty_lst_co_co_lst_trm_assoc_lst_pat_vars_tvars_cvars.induct
+
+lemma strong_induction_principle:
assumes a01: "\<And>b. P1 b KStar"
and a02: "\<And>tkind1 tkind2 b. \<lbrakk>\<And>c. P1 c tkind1; \<And>c. P1 c tkind2\<rbrakk> \<Longrightarrow> P1 b (KFun tkind1 tkind2)"
and a03: "\<And>ty1 ty2 b. \<lbrakk>\<And>c. P3 c ty1; \<And>c. P3 c ty2\<rbrakk> \<Longrightarrow> P2 b (CKEq ty1 ty2)"
@@ -333,32 +335,36 @@
and a07: "\<And>string ty_lst b. \<lbrakk>\<And>c. P4 c ty_lst\<rbrakk> \<Longrightarrow> P3 b (TFun string ty_lst)"
and a08: "\<And>tvar tkind ty b. \<lbrakk>\<And>c. P1 c tkind; \<And>c. P3 c ty; atom tvar \<sharp> b\<rbrakk>
\<Longrightarrow> P3 b (TAll tvar tkind ty)"
- and a09: "\<And>ty1 ty2 ty3 b. \<lbrakk>\<And>c. P3 c ty1; \<And>c. P3 c ty2; \<And>c. P3 c ty3\<rbrakk> \<Longrightarrow> P3 b (TEq ty1 ty2 ty3)"
- and a10: "\<And>b. P4 b TvsNil"
- and a11: "\<And>ty ty_lst b. \<lbrakk>\<And>c. P3 c ty; \<And>c. P4 c ty_lst\<rbrakk> \<Longrightarrow> P4 b (TvsCons ty ty_lst)"
- and a12: "\<And>string b. P5 b (CC string)"
+ and a09: "\<And>ck ty b. \<lbrakk>\<And>c. P2 c ck; \<And>c. P3 c ty\<rbrakk> \<Longrightarrow> P3 b (TEq ck ty)"
+ and a10: "\<And>b. P4 b TsNil"
+ and a11: "\<And>ty ty_lst b. \<lbrakk>\<And>c. P3 c ty; \<And>c. P4 c ty_lst\<rbrakk> \<Longrightarrow> P4 b (TsCons ty ty_lst)"
+ and a12: "\<And>string b. P5 b (CVar string)"
+ and a12a:"\<And>str b. P5 b (CConst str)"
and a13: "\<And>co1 co2 b. \<lbrakk>\<And>c. P5 c co1; \<And>c. P5 c co2\<rbrakk> \<Longrightarrow> P5 b (CApp co1 co2)"
and a14: "\<And>string co_lst b. \<lbrakk>\<And>c. P6 c co_lst\<rbrakk> \<Longrightarrow> P5 b (CFun string co_lst)"
and a15: "\<And>tvar ckind co b. \<lbrakk>\<And>c. P2 c ckind; \<And>c. P5 c co; atom tvar \<sharp> b\<rbrakk>
\<Longrightarrow> P5 b (CAll tvar ckind co)"
- and a16: "\<And>co1 co2 co3 b. \<lbrakk>\<And>c. P5 c co1; \<And>c. P5 c co2; \<And>c. P5 c co3\<rbrakk> \<Longrightarrow> P5 b (CEq co1 co2 co3)"
- and a17: "\<And>co b. \<lbrakk>\<And>c. P5 c co\<rbrakk> \<Longrightarrow> P5 b (CSym co)"
+ and a16: "\<And>ck co b. \<lbrakk>\<And>c. P2 c ck; \<And>c. P5 c co\<rbrakk> \<Longrightarrow> P5 b (CEq ck co)"
+ and a17: "\<And>ty b. \<lbrakk>\<And>c. P3 c ty\<rbrakk> \<Longrightarrow> P5 b (CRefl ty)"
+ and a17a: "\<And>co b. \<lbrakk>\<And>c. P5 c co\<rbrakk> \<Longrightarrow> P5 b (CSym co)"
and a18: "\<And>co1 co2 b. \<lbrakk>\<And>c. P5 c co1; \<And>c. P5 c co2\<rbrakk> \<Longrightarrow> P5 b (CCir co1 co2)"
+ and a18a:"\<And>co ty b. \<lbrakk>\<And>c. P5 c co; \<And>c. P3 c ty\<rbrakk> \<Longrightarrow> P5 b (CAt co ty)"
and a19: "\<And>co b. \<lbrakk>\<And>c. P5 c co\<rbrakk> \<Longrightarrow> P5 b (CLeft co)"
and a20: "\<And>co b. \<lbrakk>\<And>c. P5 c co\<rbrakk> \<Longrightarrow> P5 b (CRight co)"
- and a21: "\<And>co b. \<lbrakk>\<And>c. P5 c co\<rbrakk> \<Longrightarrow> P5 b (CSim co)"
+ and a21: "\<And>co1 co2 b. \<lbrakk>\<And>c. P5 c co1; \<And>c. P5 c co2\<rbrakk> \<Longrightarrow> P5 b (CSim co1 co2)"
and a22: "\<And>co b. \<lbrakk>\<And>c. P5 c co\<rbrakk> \<Longrightarrow> P5 b (CRightc co)"
and a23: "\<And>co b. \<lbrakk>\<And>c. P5 c co\<rbrakk> \<Longrightarrow> P5 b (CLeftc co)"
and a24: "\<And>co1 co2 b. \<lbrakk>\<And>c. P5 c co1; \<And>c. P5 c co2\<rbrakk> \<Longrightarrow> P5 b (CCoe co1 co2)"
and a25: "\<And>b. P6 b CsNil"
and a26: "\<And>co co_lst b. \<lbrakk>\<And>c. P5 c co; \<And>c. P6 c co_lst\<rbrakk> \<Longrightarrow> P6 b (CsCons co co_lst)"
and a27: "\<And>var b. P7 b (Var var)"
- and a28: "\<And>string b. P7 b (C string)"
+ and a28: "\<And>string b. P7 b (K string)"
and a29: "\<And>tvar tkind trm b. \<lbrakk>\<And>c. P1 c tkind; \<And>c. P7 c trm; atom tvar \<sharp> b\<rbrakk>
\<Longrightarrow> P7 b (LAMT tvar tkind trm)"
and a30: "\<And>tvar ckind trm b. \<lbrakk>\<And>c. P2 c ckind; \<And>c. P7 c trm; atom tvar \<sharp> b\<rbrakk>
\<Longrightarrow> P7 b (LAMC tvar ckind trm)"
- and a31: "\<And>trm ty b. \<lbrakk>\<And>c. P7 c trm; \<And>c. P3 c ty\<rbrakk> \<Longrightarrow> P7 b (APP trm ty)"
+ and a31: "\<And>trm ty b. \<lbrakk>\<And>c. P7 c trm; \<And>c. P3 c ty\<rbrakk> \<Longrightarrow> P7 b (AppT trm ty)"
+ and a31a:"\<And>trm co b. \<lbrakk>\<And>c. P7 c trm; \<And>c. P5 c co\<rbrakk> \<Longrightarrow> P7 b (AppC trm co)"
and a32: "\<And>var ty trm b. \<lbrakk>\<And>c. P3 c ty; \<And>c. P7 c trm; atom var \<sharp> b\<rbrakk> \<Longrightarrow> P7 b (Lam var ty trm)"
and a33: "\<And>trm1 trm2 b. \<lbrakk>\<And>c. P7 c trm1; \<And>c. P7 c trm2\<rbrakk> \<Longrightarrow> P7 b (App trm1 trm2)"
and a34: "\<And>var ty trm1 trm2 b. \<lbrakk>\<And>c. P3 c ty; \<And>c. P7 c trm1; \<And>c. P7 c trm2; atom var \<sharp> b\<rbrakk>
@@ -369,7 +375,7 @@
and a38: "\<And>pat trm assoc_lst b. \<lbrakk>\<And>c. P9 c pat; \<And>c. P7 c trm; \<And>c. P8 c assoc_lst; set (bv (pat)) \<sharp>* b\<rbrakk>
\<Longrightarrow> P8 b (ACons pat trm assoc_lst)"
and a39: "\<And>string tvars cvars vars b. \<lbrakk>\<And>c. P11 c tvars; \<And>c. P12 c cvars; \<And>c. P10 c vars\<rbrakk>
- \<Longrightarrow> P9 b (K string tvars cvars vars)"
+ \<Longrightarrow> P9 b (Kpat string tvars cvars vars)"
and a40: "\<And>b. P10 b VsNil"
and a41: "\<And>var ty vars b. \<lbrakk>\<And>c. P3 c ty; \<And>c. P10 c vars\<rbrakk> \<Longrightarrow> P10 b (VsCons var ty vars)"
and a42: "\<And>b. P11 b TvsNil"
@@ -437,17 +443,17 @@
apply blast
(* GOAL2 *)
- apply(subgoal_tac "\<exists>pa. ((pa \<bullet> (atom (p \<bullet> tvar))) \<sharp> e \<and>
- supp (Abs (p \<bullet> {atom tvar}) (p \<bullet> co)) \<sharp>* pa)")
+ apply(subgoal_tac "\<exists>pa. ((pa \<bullet> (atom (p \<bullet> cvar))) \<sharp> e \<and>
+ supp (Abs (p \<bullet> {atom cvar}) (p \<bullet> co)) \<sharp>* pa)")
apply clarify
apply (simp only: perm)
- apply(rule_tac t="CAll (p \<bullet> tvar) (p \<bullet> ckind) (p \<bullet> co)"
- and s="CAll (pa \<bullet> p \<bullet> tvar) (p \<bullet> ckind) (pa \<bullet> p \<bullet> co)" in subst)
+ apply(rule_tac t="CAll (p \<bullet> cvar) (p \<bullet> ckind) (p \<bullet> co)"
+ and s="CAll (pa \<bullet> p \<bullet> cvar) (p \<bullet> ckind) (pa \<bullet> p \<bullet> co)" in subst)
apply (simp only: eq_iff)
apply (rule_tac x="-pa" in exI)
apply (simp add: alphas eqvts eqvts_raw supp_abs fv_supp)
- apply (rule_tac t="supp (pa \<bullet> p \<bullet> co) - {atom (pa \<bullet> p \<bullet> tvar)}"
- and s="pa \<bullet> (p \<bullet> supp co - {p \<bullet> atom tvar})" in subst)
+ apply (rule_tac t="supp (pa \<bullet> p \<bullet> co) - {atom (pa \<bullet> p \<bullet> cvar)}"
+ and s="pa \<bullet> (p \<bullet> supp co - {p \<bullet> atom cvar})" in subst)
apply (simp add: eqvts)
apply (simp add: eqvts[symmetric])
apply (rule conjI)
@@ -518,17 +524,17 @@
apply blast
(* GOAL4 a copy-and-paste *)
- apply(subgoal_tac "\<exists>pa. ((pa \<bullet> (atom (p \<bullet> tvar))) \<sharp> g \<and>
- supp (Abs (p \<bullet> {atom tvar}) (p \<bullet> trm)) \<sharp>* pa)")
+ apply(subgoal_tac "\<exists>pa. ((pa \<bullet> (atom (p \<bullet> cvar))) \<sharp> g \<and>
+ supp (Abs (p \<bullet> {atom cvar}) (p \<bullet> trm)) \<sharp>* pa)")
apply clarify
apply (simp only: perm)
- apply(rule_tac t="LAMC (p \<bullet> tvar) (p \<bullet> ckind) (p \<bullet> trm)"
- and s="LAMC (pa \<bullet> p \<bullet> tvar) (p \<bullet> ckind) (pa \<bullet> p \<bullet> trm)" in subst)
+ apply(rule_tac t="LAMC (p \<bullet> cvar) (p \<bullet> ckind) (p \<bullet> trm)"
+ and s="LAMC (pa \<bullet> p \<bullet> cvar) (p \<bullet> ckind) (pa \<bullet> p \<bullet> trm)" in subst)
apply (simp only: eq_iff)
apply (rule_tac x="-pa" in exI)
apply (simp add: alphas eqvts eqvts_raw supp_abs fv_supp)
- apply (rule_tac t="supp (pa \<bullet> p \<bullet> trm) - {atom (pa \<bullet> p \<bullet> tvar)}"
- and s="pa \<bullet> (p \<bullet> supp trm - {p \<bullet> atom tvar})" in subst)
+ apply (rule_tac t="supp (pa \<bullet> p \<bullet> trm) - {atom (pa \<bullet> p \<bullet> cvar)}"
+ and s="pa \<bullet> (p \<bullet> supp trm - {p \<bullet> atom cvar})" in subst)
apply (simp add: eqvts)
apply (simp add: eqvts[symmetric])
apply (rule conjI)