--- a/Nominal/Ex/Classical.thy Mon Jun 27 19:22:10 2011 +0100
+++ b/Nominal/Ex/Classical.thy Mon Jun 27 22:51:42 2011 +0100
@@ -46,203 +46,101 @@
thm trm.supp
thm trm.supp[simplified]
-lemma Abs_lst1_fcb2:
- fixes a b :: "'a :: at"
- and S T :: "'b :: fs"
- and c::"'c::fs"
- assumes e: "(Abs_lst [atom a] T) = (Abs_lst [atom b] S)"
- and fcb1: "atom a \<sharp> f a T c"
- and fresh: "{atom a, atom b} \<sharp>* c"
- and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a T c) = f (p \<bullet> a) (p \<bullet> T) c"
- and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b S c) = f (p \<bullet> b) (p \<bullet> S) c"
- shows "f a T c = f b S c"
-proof -
- have fcb2: "atom b \<sharp> f b S c"
- using e[symmetric]
- apply(simp add: Abs_eq_iff2)
- apply(erule exE)
- apply(simp add: alphas)
- apply(rule_tac p="p" in permute_boolE)
- apply(simp add: fresh_eqvt)
- apply(subst perm2)
- using fresh
- apply(auto simp add: fresh_star_def)[1]
- apply(simp add: atom_eqvt)
- apply(rule fcb1)
- done
- have fin1: "finite (supp (f a T c))"
- apply(rule_tac S="supp (a, T, c)" in supports_finite)
- apply(simp add: supports_def)
- apply(simp add: fresh_def[symmetric])
- apply(clarify)
- apply(subst perm1)
- apply(simp add: supp_swap fresh_star_def)
- apply(simp add: swap_fresh_fresh fresh_Pair)
- apply(simp add: finite_supp)
- done
- have fin2: "finite (supp (f b S c))"
- apply(rule_tac S="supp (b, S, c)" in supports_finite)
- apply(simp add: supports_def)
- apply(simp add: fresh_def[symmetric])
- apply(clarify)
- apply(subst perm2)
- apply(simp add: supp_swap fresh_star_def)
- apply(simp add: swap_fresh_fresh fresh_Pair)
- apply(simp add: finite_supp)
- done
- obtain d::"'a::at" where fr: "atom d \<sharp> (a, b, S, T, c, f a T c, f b S c)"
- using obtain_fresh'[where x="(a, b, S, T, c, f a T c, f b S c)"]
- apply(auto simp add: finite_supp supp_Pair fin1 fin2)
- done
- have "(a \<leftrightarrow> d) \<bullet> (Abs_lst [atom a] T) = (b \<leftrightarrow> d) \<bullet> (Abs_lst [atom b] S)"
- apply(simp (no_asm_use) only: flip_def)
- apply(subst swap_fresh_fresh)
- apply(simp add: Abs_fresh_iff)
- using fr
- apply(simp add: Abs_fresh_iff)
- apply(subst swap_fresh_fresh)
- apply(simp add: Abs_fresh_iff)
- using fr
- apply(simp add: Abs_fresh_iff)
- apply(rule e)
- done
- then have "Abs_lst [atom d] ((a \<leftrightarrow> d) \<bullet> T) = Abs_lst [atom d] ((b \<leftrightarrow> d) \<bullet> S)"
- apply (simp add: swap_atom flip_def)
- done
- then have eq: "(a \<leftrightarrow> d) \<bullet> T = (b \<leftrightarrow> d) \<bullet> S"
- by (simp add: Abs1_eq_iff)
- have "f a T c = (a \<leftrightarrow> d) \<bullet> f a T c"
- unfolding flip_def
- apply(rule sym)
- apply(rule swap_fresh_fresh)
- using fcb1
- apply(simp)
- using fr
- apply(simp add: fresh_Pair)
- done
- also have "... = f d ((a \<leftrightarrow> d) \<bullet> T) c"
- unfolding flip_def
- apply(subst perm1)
- using fresh fr
- apply(simp add: supp_swap fresh_star_def fresh_Pair)
- apply(simp)
- done
- also have "... = f d ((b \<leftrightarrow> d) \<bullet> S) c" using eq by simp
- also have "... = (b \<leftrightarrow> d) \<bullet> f b S c"
- unfolding flip_def
- apply(subst perm2)
- using fresh fr
- apply(simp add: supp_swap fresh_star_def fresh_Pair)
- apply(simp)
- done
- also have "... = f b S c"
- apply(rule flip_fresh_fresh)
- using fcb2
- apply(simp)
- using fr
- apply(simp add: fresh_Pair)
- done
- finally show ?thesis by simp
-qed
-
lemma Abs_lst_fcb2:
fixes as bs :: "atom list"
and x y :: "'b :: fs"
and c::"'c::fs"
- assumes e: "(Abs_lst as x) = (Abs_lst bs y)"
+ assumes eq: "[as]lst. x = [bs]lst. y"
and fcb1: "(set as) \<sharp>* f as x c"
- and fcb2: "(set bs) \<sharp>* f bs y c"
and fresh1: "set as \<sharp>* c"
and fresh2: "set bs \<sharp>* c"
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
shows "f as x c = f bs y c"
proof -
- have fin1: "finite (supp (f as x c))"
- apply(rule_tac S="supp (as, x, c)" in supports_finite)
- apply(simp add: supports_def)
- apply(simp add: fresh_def[symmetric])
- apply(clarify)
- apply(subst perm1)
- apply(simp add: supp_swap fresh_star_def)
- apply(simp add: swap_fresh_fresh fresh_Pair)
- apply(simp add: finite_supp)
- done
- have fin2: "finite (supp (f bs y c))"
- apply(rule_tac S="supp (bs, y, c)" in supports_finite)
- apply(simp add: supports_def)
- apply(simp add: fresh_def[symmetric])
- apply(clarify)
- apply(subst perm2)
- apply(simp add: supp_swap fresh_star_def)
- apply(simp add: swap_fresh_fresh fresh_Pair)
- apply(simp add: finite_supp)
- done
+ have "supp (as, x, c) supports (f as x c)"
+ unfolding supports_def fresh_def[symmetric]
+ by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
+ then have fin1: "finite (supp (f as x c))"
+ by (auto intro: supports_finite simp add: finite_supp)
+ have "supp (bs, y, c) supports (f bs y c)"
+ unfolding supports_def fresh_def[symmetric]
+ by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
+ then have fin2: "finite (supp (f bs y c))"
+ by (auto intro: supports_finite simp add: finite_supp)
obtain q::"perm" where
- fr1: "(q \<bullet> (set as)) \<sharp>* (as, bs, x, y, c, f as x c, f bs y c)" and
+ fr1: "(q \<bullet> (set as)) \<sharp>* (x, c, f as x c, f bs y c)" and
fr2: "supp q \<sharp>* Abs_lst as x" and
inc: "supp q \<subseteq> (set as) \<union> q \<bullet> (set as)"
- using at_set_avoiding3[where xs="set as" and c="(as, bs, x, y, c, f as x c, f bs y c)"
- and x="Abs_lst as x"]
- apply(simp add: supp_Pair finite_supp fin1 fin2 Abs_fresh_star)
- apply(erule exE)
- apply(erule conjE)+
- apply(drule fresh_star_supp_conv)
- apply(blast)
- done
+ using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"]
+ fin1 fin2
+ by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
have "Abs_lst (q \<bullet> as) (q \<bullet> x) = q \<bullet> Abs_lst as x" by simp
also have "\<dots> = Abs_lst as x"
- apply(rule perm_supp_eq)
- apply(simp add: fr2)
- done
- finally have "Abs_lst (q \<bullet> as) (q \<bullet> x) = Abs_lst bs y" using e by simp
+ by (simp only: fr2 perm_supp_eq)
+ finally have "Abs_lst (q \<bullet> as) (q \<bullet> x) = Abs_lst bs y" using eq by simp
then obtain r::perm where
qq1: "q \<bullet> x = r \<bullet> y" and
qq2: "q \<bullet> as = r \<bullet> bs" and
- qq3: "supp r \<subseteq> (set (q \<bullet> as) \<union> set bs)"
- apply -
+ qq3: "supp r \<subseteq> (q \<bullet> (set as)) \<union> set bs"
apply(drule_tac sym)
apply(simp only: Abs_eq_iff2 alphas)
apply(erule exE)
apply(erule conjE)+
apply(drule_tac x="p" in meta_spec)
- apply(simp)
+ apply(simp add: set_eqvt)
apply(blast)
done
- have "f as x c = q \<bullet> (f as x c)"
- apply(rule sym)
- apply(rule perm_supp_eq)
- using inc fcb1 fr1
- apply(simp add: set_eqvt)
- apply(simp add: fresh_star_Pair)
- apply(auto simp add: fresh_star_def)
+ have "(set as) \<sharp>* f as x c" by (rule fcb1)
+ then have "q \<bullet> ((set as) \<sharp>* f as x c)"
+ by (simp add: permute_bool_def)
+ then have "set (q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"
+ apply(simp add: fresh_star_eqvt set_eqvt)
+ apply(subst (asm) perm1)
+ using inc fresh1 fr1
+ apply(auto simp add: fresh_star_def fresh_Pair)
done
+ then have "set (r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
+ then have "r \<bullet> ((set bs) \<sharp>* f bs y c)"
+ apply(simp add: fresh_star_eqvt set_eqvt)
+ apply(subst (asm) perm2[symmetric])
+ using qq3 fresh2 fr1
+ apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)
+ done
+ then have fcb2: "(set bs) \<sharp>* f bs y c" by (simp add: permute_bool_def)
+ have "f as x c = q \<bullet> (f as x c)"
+ apply(rule perm_supp_eq[symmetric])
+ using inc fcb1 fr1 by (auto simp add: fresh_star_def)
also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c"
- apply(subst perm1)
- using inc fresh1 fr1
- apply(simp add: set_eqvt)
- apply(simp add: fresh_star_Pair)
- apply(auto simp add: fresh_star_def)
- done
+ apply(rule perm1)
+ using inc fresh1 fr1 by (auto simp add: fresh_star_def)
also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
also have "\<dots> = r \<bullet> (f bs y c)"
- apply(rule sym)
- apply(subst perm2)
- using qq3 fresh2 fr1
- apply(simp add: set_eqvt)
- apply(simp add: fresh_star_Pair)
- apply(auto simp add: fresh_star_def)
- done
- also have "... = f bs y c"
+ apply(rule perm2[symmetric])
+ using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)
+ also have "... = f bs y c"
apply(rule perm_supp_eq)
- using qq3 fr1 fcb2
- apply(simp add: set_eqvt)
- apply(simp add: fresh_star_Pair)
- apply(auto simp add: fresh_star_def)
- done
+ using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)
finally show ?thesis by simp
qed
+lemma Abs_lst1_fcb2:
+ fixes a b :: "atom"
+ and x y :: "'b :: fs"
+ and c::"'c :: fs"
+ assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)"
+ and fcb1: "a \<sharp> f a x c"
+ and fresh: "{a, b} \<sharp>* c"
+ and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a x c) = f (p \<bullet> a) (p \<bullet> x) c"
+ and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b y c) = f (p \<bullet> b) (p \<bullet> y) c"
+ shows "f a x c = f b y c"
+using e
+apply(drule_tac Abs_lst_fcb2[where c="c" and f="\<lambda>(as::atom list) . f (hd as)"])
+apply(simp_all)
+using fcb1 fresh perm1 perm2
+apply(simp_all add: fresh_star_def)
+done
+
lemma supp_zero_perm_zero:
shows "supp (p :: perm) = {} \<longleftrightarrow> p = 0"
by (metis supp_perm_singleton supp_zero_perm)