--- a/Quot/Examples/AbsRepTest.thy Thu Jan 07 15:50:22 2010 +0100
+++ b/Quot/Examples/AbsRepTest.thy Thu Jan 07 16:06:13 2010 +0100
@@ -119,114 +119,100 @@
@{typ "('a fset) fset \<Rightarrow> 'a fset"})
*}
-lemma
+lemma OO_sym_inv:
assumes sr: "symp r"
and ss: "symp s"
shows "(r OO s) x y = (s OO r) y x"
-using sr ss
-unfolding symp_def
-apply (metis pred_comp.intros pred_compE ss symp_def)
-done
+ using sr ss
+ unfolding symp_def
+ apply (metis pred_comp.intros pred_compE ss symp_def)
+ done
lemma abs_o_rep:
assumes a: "Quotient r absf repf"
shows "absf o repf = id"
apply(rule ext)
apply(simp add: Quotient_abs_rep[OF a])
-done
+ done
lemma set_in_eq: "(\<forall>e. ((e \<in> A) = (e \<in> B))) \<equiv> A = B"
-apply (rule eq_reflection)
-apply auto
-done
-
-lemma map_rep_ok: "b \<approx>1 ba \<Longrightarrow> map rep_fset b \<approx>1 map rep_fset ba"
-unfolding erel1_def
-apply(simp only: set_map set_in_eq)
-done
+ apply (rule eq_reflection)
+ apply auto
+ done
-lemma map_rep_ok_gen: "b \<approx>1 ba \<Longrightarrow> map rep2 b \<approx>1 map rep2 ba"
-unfolding erel1_def
-apply(simp only: set_map set_in_eq)
-done
-
-lemma map_abs_ok: "b \<approx>1 ba \<Longrightarrow> map abs_fset b \<approx>1 map abs_fset ba"
-unfolding erel1_def
-apply(simp only: set_map set_in_eq)
-done
-
-lemma map_abs_ok_gen: "b \<approx>1 ba \<Longrightarrow> map abs2 b \<approx>1 map abs2 ba"
-unfolding erel1_def
-apply(simp only: set_map set_in_eq)
-done
+lemma map_rel_cong: "b \<approx>1 ba \<Longrightarrow> map f b \<approx>1 map f ba"
+ unfolding erel1_def
+ apply(simp only: set_map set_in_eq)
+ done
lemma quotient_compose_list_pre:
"(list_rel op \<approx>1 OO op \<approx>1 OO list_rel op \<approx>1) r s =
((list_rel op \<approx>1 OO op \<approx>1 OO list_rel op \<approx>1) r r \<and>
- (list_rel op \<approx>1 OO op \<approx>1 OO list_rel op \<approx>1) s s \<and> abs_fset (map abs_fset r) = abs_fset (map abs_fset s))"
-apply rule
-apply rule
-apply rule
-apply (rule list_rel_refl)
-apply (metis equivp_def fset_equivp)
-apply rule
-apply (rule equivp_reflp[OF fset_equivp])
-apply (rule list_rel_refl)
-apply (metis equivp_def fset_equivp)
-apply(rule)
-apply rule
-apply (rule list_rel_refl)
-apply (metis equivp_def fset_equivp)
-apply rule
-apply (rule equivp_reflp[OF fset_equivp])
-apply (rule list_rel_refl)
-apply (metis equivp_def fset_equivp)
-apply (subgoal_tac "map abs_fset r \<approx>1 map abs_fset s")
-apply (metis Quotient_rel[OF Quotient_fset])
-apply (auto)[1]
-apply (subgoal_tac "map abs_fset r = map abs_fset b")
-prefer 2
-apply (metis Quotient_rel[OF list_quotient[OF Quotient_fset]])
-apply (subgoal_tac "map abs_fset s = map abs_fset ba")
-prefer 2
-apply (metis Quotient_rel[OF list_quotient[OF Quotient_fset]])
-apply (simp add: map_abs_ok)
-apply rule
-apply (rule rep_abs_rsp[of "list_rel op \<approx>1" "map abs_fset"])
-apply (tactic {* Quotient_Tacs.quotient_tac @{context} 1 *})
-apply (rule list_rel_refl)
-apply (metis equivp_def fset_equivp)
-apply rule
-prefer 2
-apply (rule rep_abs_rsp_left[of "list_rel op \<approx>1" "map abs_fset"])
-apply (tactic {* Quotient_Tacs.quotient_tac @{context} 1 *})
-apply (rule list_rel_refl)
-apply (metis equivp_def fset_equivp)
-apply (erule conjE)+
-apply (subgoal_tac "map abs_fset r \<approx>1 map abs_fset s")
-prefer 2
-apply (metis Quotient_def Quotient_fset equivp_reflp fset_equivp)
-apply (rule map_rep_ok)
-apply (assumption)
-done
+ (list_rel op \<approx>1 OO op \<approx>1 OO list_rel op \<approx>1) s s \<and>
+ abs_fset (map abs_fset r) = abs_fset (map abs_fset s))"
+ apply rule
+ apply rule
+ apply rule
+ apply (rule list_rel_refl)
+ apply (metis equivp_def fset_equivp)
+ apply rule
+ apply (rule equivp_reflp[OF fset_equivp])
+ apply (rule list_rel_refl)
+ apply (metis equivp_def fset_equivp)
+ apply(rule)
+ apply rule
+ apply (rule list_rel_refl)
+ apply (metis equivp_def fset_equivp)
+ apply rule
+ apply (rule equivp_reflp[OF fset_equivp])
+ apply (rule list_rel_refl)
+ apply (metis equivp_def fset_equivp)
+ apply (subgoal_tac "map abs_fset r \<approx>1 map abs_fset s")
+ apply (metis Quotient_rel[OF Quotient_fset])
+ apply (auto)[1]
+ apply (subgoal_tac "map abs_fset r = map abs_fset b")
+ prefer 2
+ apply (metis Quotient_rel[OF list_quotient[OF Quotient_fset]])
+ apply (subgoal_tac "map abs_fset s = map abs_fset ba")
+ prefer 2
+ apply (metis Quotient_rel[OF list_quotient[OF Quotient_fset]])
+ apply (simp add: map_rel_cong)
+ apply rule
+ apply (rule rep_abs_rsp[of "list_rel op \<approx>1" "map abs_fset"])
+ apply (tactic {* Quotient_Tacs.quotient_tac @{context} 1 *})
+ apply (rule list_rel_refl)
+ apply (metis equivp_def fset_equivp)
+ apply rule
+ prefer 2
+ apply (rule rep_abs_rsp_left[of "list_rel op \<approx>1" "map abs_fset"])
+ apply (tactic {* Quotient_Tacs.quotient_tac @{context} 1 *})
+ apply (rule list_rel_refl)
+ apply (metis equivp_def fset_equivp)
+ apply (erule conjE)+
+ apply (subgoal_tac "map abs_fset r \<approx>1 map abs_fset s")
+ prefer 2
+ apply (metis Quotient_def Quotient_fset equivp_reflp fset_equivp)
+ apply (rule map_rel_cong)
+ apply (assumption)
+ done
lemma quotient_compose_list:
shows "Quotient ((list_rel op \<approx>1) OO (op \<approx>1) OO (list_rel op \<approx>1))
- (abs_fset \<circ> (map abs_fset)) ((map rep_fset) \<circ> rep_fset)"
+ (abs_fset \<circ> (map abs_fset)) ((map rep_fset) \<circ> rep_fset)"
unfolding Quotient_def comp_def
-apply (rule)+
-apply (simp add: abs_o_rep[OF Quotient_fset] id_simps Quotient_abs_rep[OF Quotient_fset])
-apply (rule)
-apply (rule)
-apply (rule)
-apply (rule list_rel_refl)
-apply (metis equivp_def fset_equivp)
-apply (rule)
-apply (rule equivp_reflp[OF fset_equivp])
-apply (rule list_rel_refl)
-apply (metis equivp_def fset_equivp)
-apply rule
-apply rule
+ apply (rule)+
+ apply (simp add: abs_o_rep[OF Quotient_fset] id_simps Quotient_abs_rep[OF Quotient_fset])
+ apply (rule)
+ apply (rule)
+ apply (rule)
+ apply (rule list_rel_refl)
+ apply (metis equivp_def fset_equivp)
+ apply (rule)
+ apply (rule equivp_reflp[OF fset_equivp])
+ apply (rule list_rel_refl)
+ apply (metis equivp_def fset_equivp)
+ apply rule
+ apply rule
apply(rule quotient_compose_list_pre)
done
@@ -237,52 +223,52 @@
((list_rel r2 OO op \<approx>1 OO list_rel r2) r r \<and>
(list_rel r2 OO op \<approx>1 OO list_rel r2) s s \<and>
abs_fset (map abs2 r) = abs_fset (map abs2 s))"
-apply rule
-apply rule
-apply rule
-apply (rule list_rel_refl)
-apply (metis equivp_def a)
-apply rule
-apply (rule equivp_reflp[OF fset_equivp])
-apply (rule list_rel_refl)
-apply (metis equivp_def a)
-apply(rule)
-apply rule
-apply (rule list_rel_refl)
-apply (metis equivp_def a)
-apply rule
-apply (rule equivp_reflp[OF fset_equivp])
-apply (rule list_rel_refl)
-apply (metis equivp_def a)
-apply (subgoal_tac "map abs2 r \<approx>1 map abs2 s")
-apply (metis Quotient_rel[OF Quotient_fset])
-apply (auto)[1]
-apply (subgoal_tac "map abs2 r = map abs2 b")
-prefer 2
-apply (metis Quotient_rel[OF list_quotient[OF b]])
-apply (subgoal_tac "map abs2 s = map abs2 ba")
-prefer 2
-apply (metis Quotient_rel[OF list_quotient[OF b]])
-apply (simp add: map_abs_ok_gen)
-apply rule
-apply (rule rep_abs_rsp[of "list_rel r2" "map abs2"])
-apply (rule list_quotient)
-apply (rule b)
-apply (rule list_rel_refl)
-apply (metis equivp_def a)
-apply rule
-prefer 2
-apply (rule rep_abs_rsp_left[of "list_rel r2" "map abs2"])
-apply (rule list_quotient)
-apply (rule b)
-apply (rule list_rel_refl)
-apply (metis equivp_def a)
-apply (erule conjE)+
-apply (subgoal_tac "map abs2 r \<approx>1 map abs2 s")
-apply (rule map_rep_ok_gen)
-apply (assumption)
-apply (metis Quotient_def Quotient_fset equivp_reflp fset_equivp a b)
-done
+ apply rule
+ apply rule
+ apply rule
+ apply (rule list_rel_refl)
+ apply (metis equivp_def a)
+ apply rule
+ apply (rule equivp_reflp[OF fset_equivp])
+ apply (rule list_rel_refl)
+ apply (metis equivp_def a)
+ apply(rule)
+ apply rule
+ apply (rule list_rel_refl)
+ apply (metis equivp_def a)
+ apply rule
+ apply (rule equivp_reflp[OF fset_equivp])
+ apply (rule list_rel_refl)
+ apply (metis equivp_def a)
+ apply (subgoal_tac "map abs2 r \<approx>1 map abs2 s")
+ apply (metis Quotient_rel[OF Quotient_fset])
+ apply (auto)[1]
+ apply (subgoal_tac "map abs2 r = map abs2 b")
+ prefer 2
+ apply (metis Quotient_rel[OF list_quotient[OF b]])
+ apply (subgoal_tac "map abs2 s = map abs2 ba")
+ prefer 2
+ apply (metis Quotient_rel[OF list_quotient[OF b]])
+ apply (simp add: map_rel_cong)
+ apply rule
+ apply (rule rep_abs_rsp[of "list_rel r2" "map abs2"])
+ apply (rule list_quotient)
+ apply (rule b)
+ apply (rule list_rel_refl)
+ apply (metis equivp_def a)
+ apply rule
+ prefer 2
+ apply (rule rep_abs_rsp_left[of "list_rel r2" "map abs2"])
+ apply (rule list_quotient)
+ apply (rule b)
+ apply (rule list_rel_refl)
+ apply (metis equivp_def a)
+ apply (erule conjE)+
+ apply (subgoal_tac "map abs2 r \<approx>1 map abs2 s")
+ apply (rule map_rel_cong)
+ apply (assumption)
+ apply (metis Quotient_def Quotient_fset equivp_reflp fset_equivp a b)
+ done
lemma quotient_compose_list_gen:
assumes a: "Quotient r2 abs2 rep2"
@@ -290,25 +276,24 @@
shows "Quotient ((list_rel r2) OO (op \<approx>1) OO (list_rel r2))
(abs_fset \<circ> (map abs2)) ((map rep2) \<circ> rep_fset)"
unfolding Quotient_def comp_def
-apply (rule)+
-apply (simp add: abs_o_rep[OF a] id_simps Quotient_abs_rep[OF Quotient_fset])
-apply (rule)
-apply (rule)
-apply (rule)
-apply (rule list_rel_refl)
-apply (metis b equivp_def)
-apply (rule)
-apply (rule equivp_reflp[OF fset_equivp])
-apply (rule list_rel_refl)
-apply (metis b equivp_def)
-apply rule
-apply rule
-apply(rule quotient_compose_list_gen_pre[OF b a])
-done
+ apply (rule)+
+ apply (simp add: abs_o_rep[OF a] id_simps Quotient_abs_rep[OF Quotient_fset])
+ apply (rule)
+ apply (rule)
+ apply (rule)
+ apply (rule list_rel_refl)
+ apply (metis b equivp_def)
+ apply (rule)
+ apply (rule equivp_reflp[OF fset_equivp])
+ apply (rule list_rel_refl)
+ apply (metis b equivp_def)
+ apply rule
+ apply rule
+ apply(rule quotient_compose_list_gen_pre[OF b a])
+ done
(* This is the general statement but the types of abs2 and rep2
are wrong as can be seen in following exanples *)
-
lemma quotient_compose_general:
assumes a2: "Quotient r1 abs1 rep1"
and "Quotient r2 abs2 rep2"
@@ -316,10 +301,8 @@
(abs1 \<circ> (map abs2)) ((map rep2) \<circ> rep1)"
sorry
-thm quotient_compose_ok [OF Quotient_fset]
+thm quotient_compose_list_gen[OF Quotient_fset fset_equivp]
thm quotient_compose_general[OF Quotient_fset]
-
-thm quotient_compose_ok [OF Quotient_fset Quotient_fset]
(* Doesn't work: *)
(* thm quotient_compose_general[OF Quotient_fset Quotient_fset] *)