--- a/Nominal/Nominal2_Base.thy Mon Jan 17 12:33:37 2011 +0000
+++ b/Nominal/Nominal2_Base.thy Mon Jan 17 12:34:11 2011 +0000
@@ -415,6 +415,7 @@
shows "p \<bullet> (f x) = (p \<bullet> f) (p \<bullet> x)"
unfolding permute_fun_def by simp
+
subsection {* Permutations for booleans *}
instantiation bool :: pt
@@ -451,6 +452,16 @@
unfolding permute_fun_def permute_bool_def
by (auto, drule_tac x="p \<bullet> x" in spec, simp)
+lemma ex1_eqvt:
+ shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. (p \<bullet> P) x)"
+ unfolding Ex1_def
+ apply(simp add: ex_eqvt)
+ unfolding permute_fun_def
+ apply(simp add: conj_eqvt all_eqvt)
+ unfolding permute_fun_def
+ apply(simp add: imp_eqvt permute_bool_def)
+ done
+
lemma permute_boolE:
fixes P::"bool"
shows "p \<bullet> P \<Longrightarrow> P"
@@ -718,7 +729,6 @@
instance int :: pure
proof qed (rule permute_int_def)
-
subsection {* Supp, Freshness and Supports *}
context pt
@@ -1233,16 +1243,26 @@
unfolding fresh_def
by auto
-text {* Support of Equivariant Functions *}
+text {* Equivariant Functions *}
+
+definition
+ "eqvt f \<equiv> \<forall>p. p \<bullet> f = f"
+
+lemma eqvtI:
+ shows "(\<And>p. p \<bullet> f \<equiv> f) \<Longrightarrow> eqvt f"
+unfolding eqvt_def
+by simp
lemma supp_fun_eqvt:
- assumes a: "\<And>p. p \<bullet> f = f"
+ assumes a: "eqvt f"
shows "supp f = {}"
+ using a
+ unfolding eqvt_def
unfolding supp_def
- using a by simp
+ by simp
lemma fresh_fun_eqvt_app:
- assumes a: "\<And>p. p \<bullet> f = f"
+ assumes a: "eqvt f"
shows "a \<sharp> x \<Longrightarrow> a \<sharp> f x"
proof -
from a have "supp f = {}" by (simp add: supp_fun_eqvt)
@@ -1251,6 +1271,81 @@
using supp_fun_app by auto
qed
+text {* equivariance of a function at a given argument *}
+definition
+ "eqvt_at f x \<equiv> \<forall>p. p \<bullet> (f x) = f (p \<bullet> x)"
+
+lemma supp_eqvt_at:
+ assumes asm: "eqvt_at f x"
+ and fin: "finite (supp x)"
+ shows "supp (f x) \<subseteq> supp x"
+apply(rule supp_is_subset)
+unfolding supports_def
+unfolding fresh_def[symmetric]
+using asm
+apply(simp add: eqvt_at_def)
+apply(simp add: swap_fresh_fresh)
+apply(rule fin)
+done
+
+lemma finite_supp_eqvt_at:
+ assumes asm: "eqvt_at f x"
+ and fin: "finite (supp x)"
+ shows "finite (supp (f x))"
+apply(rule finite_subset)
+apply(rule supp_eqvt_at[OF asm fin])
+apply(rule fin)
+done
+
+lemma fresh_eqvt_at:
+ assumes asm: "eqvt_at f x"
+ and fin: "finite (supp x)"
+ and fresh: "a \<sharp> x"
+ shows "a \<sharp> f x"
+using fresh
+unfolding fresh_def
+using supp_eqvt_at[OF asm fin]
+by auto
+
+text {* helper functions for nominal_functions *}
+
+lemma the_default_eqvt:
+ assumes unique: "\<exists>!x. P x"
+ shows "(p \<bullet> (THE_default d P)) = (THE_default d (p \<bullet> P))"
+ apply(rule THE_default1_equality [symmetric])
+ apply(rule_tac p="-p" in permute_boolE)
+ apply(simp add: ex1_eqvt)
+ apply(rule unique)
+ apply(rule_tac p="-p" in permute_boolE)
+ apply(rule subst[OF permute_fun_app_eq])
+ apply(simp)
+ apply(rule THE_defaultI'[OF unique])
+ done
+
+lemma fundef_ex1_eqvt:
+ fixes x::"'a::pt"
+ assumes f_def: "f == (\<lambda>x::'a. THE_default d (G x))"
+ assumes eqvt: "eqvt G"
+ assumes ex1: "\<exists>!y. G x y"
+ shows "(p \<bullet> (f x)) = f (p \<bullet> x)"
+ apply(simp only: f_def)
+ apply(subst the_default_eqvt)
+ apply(rule ex1)
+ using eqvt
+ unfolding eqvt_def
+ apply(simp add: permute_fun_app_eq)
+ done
+
+lemma fundef_ex1_eqvt_at:
+ fixes x::"'a::pt"
+ assumes f_def: "f == (\<lambda>x::'a. THE_default d (G x))"
+ assumes eqvt: "eqvt G"
+ assumes ex1: "\<exists>!y. G x y"
+ shows "eqvt_at f x"
+ unfolding eqvt_at_def
+ using assms
+ by (auto intro: fundef_ex1_eqvt)
+
section {* Support of Finite Sets of Finitely Supported Elements *}
@@ -1274,15 +1369,23 @@
unfolding fresh_def
by (simp add: supp_finite_atom_set[OF assms])
-
lemma Union_fresh:
shows "a \<sharp> S \<Longrightarrow> a \<sharp> (\<Union>x \<in> S. supp x)"
unfolding Union_image_eq[symmetric]
apply(rule_tac f="\<lambda>S. \<Union> supp ` S" in fresh_fun_eqvt_app)
- apply(simp add: permute_fun_def UNION_def Collect_def Bex_def ex_eqvt mem_def conj_eqvt)
- apply(subst permute_fun_app_eq)
- back
- apply(simp add: supp_eqvt)
+ unfolding eqvt_def
+ unfolding permute_fun_def
+ apply(simp)
+ unfolding UNION_def
+ unfolding Collect_def
+ unfolding Bex_def
+ apply(simp add: ex_eqvt)
+ unfolding permute_fun_def
+ apply(simp add: conj_eqvt)
+ apply(simp add: mem_eqvt)
+ apply(simp add: supp_eqvt)
+ unfolding permute_fun_def
+ apply(simp)
apply(assumption)
done
@@ -1547,7 +1650,7 @@
by (metis mem_permute_iff permute_minus_cancel(1) fresh_permute_iff)
lemma fresh_star_eqvt:
- shows "(p \<bullet> (as \<sharp>* x)) = (p \<bullet> as) \<sharp>* (p \<bullet> x)"
+ shows "p \<bullet> (as \<sharp>* x) \<longleftrightarrow> (p \<bullet> as) \<sharp>* (p \<bullet> x)"
unfolding fresh_star_def
unfolding Ball_def
apply(simp add: all_eqvt)