Tutorial/Tutorial1.thy
changeset 2686 52e1e98edb34
child 2687 d0fb94035969
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Tutorial/Tutorial1.thy	Wed Jan 19 23:58:12 2011 +0100
@@ -0,0 +1,1553 @@
+
+header {* 
+
+  Nominal Isabelle Tutorial
+  =========================
+
+  There will be hands-on exercises throughout the tutorial. Therefore
+  it would be good if you have your own laptop.
+
+  Nominal Isabelle is a definitional extension of Isabelle/HOL, which
+  means it does not add any new axioms to higher-order logic. It merely
+  adds new definitions and an infrastructure for 'nominal resoning'.
+
+
+  The Interface
+  -------------
+
+  The Isabelle theorem prover comes with an interface for jEdit interface. 
+  Unlike many other theorem prover interfaces (e.g. ProofGeneral) where you 
+  try to advance a 'checked' region in a proof script, this interface immediately 
+  checks the whole buffer. The text you type is also immediately checked
+  as you type. Malformed text or unfinished proofs are highlighted in red 
+  with a little red 'stop' signal on the left-hand side. If you drag the 
+  'red-box' cursor over a line, the Output window gives further feedback. 
+
+  Note: If a section is not parsed correctly, the work-around is to cut it 
+  out and paste it back into the text (cut-out: Ctrl + X; paste in: Ctrl + V;
+  Cmd is Ctrl on the Mac)
+
+  Nominal Isabelle and the interface can be started on the command line with
+
+     isabelle jedit -l HOL-Nominal2
+     isabelle jedit -l HOL-Nominal2 A.thy B.thy ...
+
+
+  Symbols
+  ------- 
+
+  Symbols can considerably improve the readability of your statements and proofs. 
+  They can be input by just typing 'name-of-symbol' where 'name-of-symbol' is the 
+  usual latex name of that symbol. A little window will then appear in which 
+  you can select the symbol. With `Escape' you can ignore any suggestion.
+  
+  There are some handy short-cuts for frequently used symbols. 
+  For example 
+
+      short-cut  symbol
+
+          =>      \<Rightarrow>
+          ==>     \<Longrightarrow>
+          -->     \<longrightarrow>
+          !       \<forall>        
+          ?       \<exists>
+          /\      \<and>
+          \/      \<or>
+          ~       \<not>
+          ~=      \<noteq>
+          :       \<in>
+          ~:      \<notin>
+
+  For nominal two important symbols are
+
+          \<sharp>       sharp     (freshness)
+          \<bullet>       bullet    (permutations)
+*}
+
+theory Tutorial1
+imports Lambda
+begin
+
+section {* Theories *}
+
+text {*
+  All formal developments in Isabelle are part of a theory. A theory 
+  needs to have a name and must import some pre-existing theory (as indicated 
+  above). The imported theory will normally be the theory Nominal2 (which 
+  contains many useful concepts like set-theory, lists, nominal theory etc).
+
+  For the purpose of the tutorial we import the theory Lambda.thy which
+  contains already some useful definitions for (alpha-equated) lambda terms.
+*}
+
+
+
+section {* Types *}
+
+text {*
+  Isabelle is based on simple types including some polymorphism. It also includes 
+  some overloading, which means that sometimes explicit type annotations need to 
+  be given.
+
+    - Base types include: nat, bool, string
+
+    - Type formers include: 'a list, ('a \<times> 'b), 'c set   
+
+    - Type variables are written like in ML with an apostrophe: 'a, 'b, \<dots>
+
+  Types known to Isabelle can be queried using the command "typ".
+*}
+
+typ nat
+typ bool
+typ string           
+typ lam             -- {* alpha-equated lambda terms defined in Lambda.thy *}
+typ name            -- {* type of (object) variables defined in Lambda.thy *}
+typ "('a \<times> 'b)"     -- {* pair type *}
+typ "'c set"        -- {* set type *}
+typ "'a list"       -- {* list type *}
+typ "nat \<Rightarrow> bool"   -- {* type of functions from natural numbers to booleans *}
+
+
+text {* Some malformed types: *}
+
+(*
+typ boolean     -- {* undeclared type *} 
+typ set         -- {* type argument missing *}
+*)
+
+
+section {* Terms *}
+
+text {*
+   Every term in Isabelle needs to be well-typed. However they can have 
+   polymorphic type. Whether a term is accepted can be queried using
+   the command "term". 
+*}
+
+term c                 -- {* a variable of polymorphic type *}
+term "1::nat"          -- {* the constant 1 in natural numbers *}
+term 1                 -- {* the constant 1 with polymorphic type *}
+term "{1, 2, 3::nat}"  -- {* the set containing natural numbers 1, 2 and 3 *}
+term "[1, 2, 3]"       -- {* the list containing the polymorphic numbers 1, 2 and 3 *}
+term "(True, ''c'')"   -- {* a pair consisting of the boolean true and the string "c" *}
+term "Suc 0"           -- {* successor of 0, in other words 1::nat *}
+term "Lam [x].Var x"   -- {* a lambda-term *}
+term "App t1 t2"       -- {* another lambda-term *}
+term "x::name"         -- {* an (object) variable of type name *}
+term "atom (x::name)"  -- {* atom is an overloded function *}
+
+text {* 
+  Lam [x].Var is the syntax we made up for lambda abstractions. You can have
+  your own syntax. We also came up with "name". If you prefer, you can call
+  it identifiers or have more than one type for (object languag) variables.
+
+  Isabelle provides some useful colour feedback about constants (black), 
+  free variables (blue) and bound variables (green).
+*}
+
+term "True"    -- {* a constant that is defined in HOL...written in black *}
+term "true"    -- {* not recognised as a constant, therefore it is interpreted
+                     as a free variable, written in blue *}
+term "\<forall>x. P x" -- {* x is bound (green), P is free (blue) *}
+
+
+text {* Formulae in Isabelle/HOL are terms of type bool *}
+
+term "True"
+term "True \<and> False"
+term "True \<or> B"
+term "{1,2,3} = {3,2,1}"
+term "\<forall>x. P x"
+term "A \<longrightarrow> B"
+term "atom a \<sharp> t"
+
+text {*
+  When working with Isabelle, one deals with an object logic (that is HOL) and 
+  Isabelle's rule framework (called Pure). Occasionally one has to pay attention 
+  to this fact. But for the moment we ignore this completely.
+*}
+
+term "A \<longrightarrow> B"  -- {* versus *}
+term "A \<Longrightarrow> B"
+
+term "\<forall>x. P x"  -- {* versus *}
+term "\<And>x. P x"
+
+
+
+section {* Inductive Definitions: Transitive Closures of Beta-Reduction *}
+
+text {*
+  The theory Lmabda alraedy contains a definition for beta-reduction, written
+
+     t \<longrightarrow>b t'
+
+  In this section we want to define inductively the transitive closure of
+  beta-reduction.
+
+  Inductive definitions in Isabelle start with the keyword "inductive" and a predicate 
+  name.  One can optionally provide a type for the predicate. Clauses of the inductive
+  predicate are introduced by "where" and more than two clauses need to be 
+  separated by "|". One can also give a name to each clause and indicate that it 
+  should be added to the hints database ("[intro]"). A typical clause has some 
+  premises and a conclusion. This is written in Isabelle as:
+
+   "premise \<Longrightarrow> conclusion"
+   "premise1 \<Longrightarrow> premise2 \<Longrightarrow> \<dots> premisen \<Longrightarrow> conclusion"
+
+  There is an alternative way of writing the latter clause as
+
+   "\<lbrakk>premise1; premise2; \<dots> premisen\<rbrakk> \<Longrightarrow> conclusion"
+
+  If no premise is present, then one just writes
+
+   "conclusion"
+
+  Below we give two definitions for the transitive closure
+*}
+
+inductive
+  beta_star1 :: "lam \<Rightarrow> lam \<Rightarrow> bool" ("_ \<longrightarrow>b* _" [60, 60] 60)
+where
+  bs1_refl: "t \<longrightarrow>b* t"
+| bs1_trans: "\<lbrakk>t1 \<longrightarrow>b t2; t2 \<longrightarrow>b* t3\<rbrakk> \<Longrightarrow> t1 \<longrightarrow>b* t3"
+
+
+inductive
+  beta_star2 :: "lam \<Rightarrow> lam \<Rightarrow> bool" ("_ \<longrightarrow>b** _" [60, 60] 60)
+where
+  bs2_refl: "t \<longrightarrow>b** t"
+| bs2_step: "t1 \<longrightarrow>b t2 \<Longrightarrow> t1 \<longrightarrow>b** t2"
+| bs2_trans: "\<lbrakk>t1 \<longrightarrow>b** t2; t2 \<longrightarrow>b** t3\<rbrakk> \<Longrightarrow> t1 \<longrightarrow>b** t3"
+
+section {* Theorems *}
+
+text {*
+  A central concept in Isabelle is that of theorems. Isabelle's theorem
+  database can be queried using 
+*}
+
+thm bs1_refl
+thm bs2_trans
+thm conjI
+thm conjunct1
+
+text {* 
+  Notice that theorems usually contain schematic variables (e.g. ?P, ?Q, \<dots>). 
+  These schematic variables can be substituted with any term (of the right type 
+  of course). 
+
+  When defining the predicates beta_star, Isabelle provides us automatically 
+  with the following theorems that state how they can be introduced and what 
+  constitutes an induction over them. 
+*}
+
+thm beta_star1.intros
+thm beta_star2.induct
+
+
+section {* Lemmas / Theorems / Corollaries *}
+
+text {*
+  Whether to use lemma, theorem or corollary makes no semantic difference 
+  in Isabelle. 
+
+  A lemma starts with "lemma" and consists of a statement ("shows \<dots>") and 
+  optionally a lemma name, some type-information for variables ("fixes \<dots>") 
+  and some assumptions ("assumes \<dots>"). 
+
+  Lemmas also need to have a proof, but ignore this 'detail' for the moment.
+
+  Examples are
+*}
+
+lemma alpha_equ:
+  shows "Lam [x].Var x = Lam [y].Var y"
+  by (simp add: lam.eq_iff Abs1_eq_iff lam.fresh fresh_at_base)
+
+lemma Lam_freshness:
+  assumes a: "x \<noteq> y"
+  and     b: "atom y \<sharp> Lam [x].t"
+  shows "atom y \<sharp> t"
+  using a b by (simp add: lam.fresh Abs_fresh_iff) 
+
+lemma neutral_element:
+  fixes x::"nat"
+  shows "x + 0 = x"
+  by simp
+
+text {*
+  Note that in the last statement, the explicit type annotation is important 
+  in order for Isabelle to be able to figure out what 0 stands for (e.g. a 
+  natural number, a vector, etc) and which lemmas to apply.
+*}
+
+
+section {* Isar Proofs *}
+
+text {*
+  Isar is a language for writing formal proofs that can be understood by humans 
+  and by Isabelle. An Isar proof can be thought of as a sequence of 'stepping stones' 
+  that start with some assumptions and lead to the goal to be established. Every such 
+  stepping stone is introduced by "have" followed by the statement of the stepping 
+  stone. An exception is the goal to be proved, which need to be introduced with "show".
+
+      have "statement"  \<dots>
+      show "goal_to_be_proved" \<dots>
+
+  Since proofs usually do not proceed in a linear fashion, labels can be given 
+  to every stepping stone and they can be used later to explicitly refer to this 
+  corresponding stepping stone ("using").
+
+      have label: "statement1"  \<dots>
+      \<dots>
+      have "later_statement" using label \<dots>
+
+  Each stepping stone (or have-statement) needs to have a justification. The 
+  simplest justification is "sorry" which admits any stepping stone, even false 
+  ones (this is good during the development of proofs). 
+
+      have "outrageous_false_statement" sorry
+
+  Assumptions can be 'justified' using "by fact". 
+
+      have "assumption" by fact
+
+  Derived facts can be justified using 
+
+      have "statement" by simp    -- simplification 
+      have "statement" by auto    -- proof search and simplification 
+      have "statement" by blast   -- only proof search 
+
+  If facts or lemmas are needed in order to justify a have-statement, then
+  one can feed these facts into the proof by using "using label \<dots>" or 
+  "using theorem-name \<dots>". More than one label at a time is allowed. For
+  example
+
+      have "statement" using label1 label2 theorem_name by auto
+
+  Induction proofs in Isar are set up by indicating over which predicate(s) 
+  the induction proceeds ("using a b") followed by the command "proof (induct)". 
+  In this way, Isabelle uses defaults for which induction should be performed. 
+  These defaults can be overridden by giving more information, like the variable 
+  over which a structural induction should proceed, or a specific induction principle, 
+  such as well-founded inductions. 
+
+  After the induction is set up, the proof proceeds by cases. In Isar these 
+  cases can be given in any order. Most commonly they are started with "case" and the 
+  name of the case, and optionally some legible names for the variables used inside 
+  the case. 
+
+  In each "case", we need to establish a statement introduced by "show". Once 
+  this has been done, the next case can be started using "next". When all cases 
+  are completed, the proof can be finished using "qed".
+
+  This means a typical induction proof has the following pattern
+
+     proof (induct)
+       case \<dots>
+       \<dots>
+       show \<dots>
+     next
+       case \<dots>
+       \<dots>
+       show \<dots>
+     \<dots>
+     qed
+*}
+
+
+subsection {* Exercise I *}
+
+text {*
+  Remove the sorries in the proof below and fill in the proper
+  justifications. 
+*}
+
+
+lemma
+  assumes a: "t1 \<longrightarrow>b* t2" 
+  shows "t1 \<longrightarrow>b** t2"
+  using a
+proof (induct)
+  case (bs1_refl t)
+  show "t \<longrightarrow>b** t" using bs2_refl by blast
+next
+  case (bs1_trans t1 t2 t3)
+  have beta: "t1 \<longrightarrow>b t2" by fact
+  have ih: "t2 \<longrightarrow>b** t3" by fact
+  have a: "t1 \<longrightarrow>b** t2" using beta bs2_step by blast
+  show "t1 \<longrightarrow>b** t3" using a ih bs2_trans by blast
+qed
+
+
+subsection {* Exercise II *}
+
+text {*
+  Again remove the sorries in the proof below and fill in the proper
+  justifications. 
+*}
+
+lemma bs1_trans2:
+  assumes a: "t1 \<longrightarrow>b* t2"
+  and     b: "t2 \<longrightarrow>b* t3"
+  shows "t1 \<longrightarrow>b* t3"
+using a b
+proof (induct)
+  case (bs1_refl t1)
+  have a: "t1 \<longrightarrow>b* t3" by fact
+  show "t1 \<longrightarrow>b* t3" using a by blast
+next
+  case (bs1_trans t1 t2 t3')
+  have ih1: "t1 \<longrightarrow>b t2" by fact
+  have ih2: "t3' \<longrightarrow>b* t3 \<Longrightarrow> t2 \<longrightarrow>b* t3" by fact
+  have asm: "t3' \<longrightarrow>b* t3" by fact
+  have a: "t2 \<longrightarrow>b* t3" using ih2 asm by blast
+  show "t1 \<longrightarrow>b* t3" using ih1 a beta_star1.bs1_trans by blast
+qed
+  
+lemma
+  assumes a: "t1 \<longrightarrow>b** t2"
+  shows "t1 \<longrightarrow>b* t2"
+using a
+proof (induct)
+  case (bs2_refl t)
+  show "t \<longrightarrow>b* t" using bs1_refl by blast
+next
+  case (bs2_step t1 t2)
+  have ih: "t1 \<longrightarrow>b t2" by fact
+  have a: "t2 \<longrightarrow>b* t2" using bs1_refl by blast
+  show "t1 \<longrightarrow>b* t2" using ih a bs1_trans by blast
+next
+  case (bs2_trans t1 t2 t3)
+  have ih1: "t1 \<longrightarrow>b* t2" by fact
+  have ih2: "t2 \<longrightarrow>b* t3" by fact
+  show "t1 \<longrightarrow>b* t3" using ih1 ih2 bs1_trans2 by blast  
+qed
+  
+text {* 
+  Just like gotos in the Basic programming language, labels often reduce 
+  the readability of proofs. Therefore one can use in Isar the notation
+  "then have" in order to feed a have-statement to the proof of 
+  the next have-statement. This is used in teh second case below.
+*}
+
+lemma 
+  assumes a: "t1 \<longrightarrow>b* t2"
+  and     b: "t2 \<longrightarrow>b* t3"
+  shows "t1 \<longrightarrow>b* t3"
+using a b
+proof (induct)
+  case (bs1_refl t1)
+  show "t1 \<longrightarrow>b* t3" by fact
+next
+  case (bs1_trans t1 t2 t3')
+  have ih1: "t1 \<longrightarrow>b t2" by fact
+  have ih2: "t3' \<longrightarrow>b* t3 \<Longrightarrow> t2 \<longrightarrow>b* t3" by fact
+  have "t3' \<longrightarrow>b* t3" by fact
+  then have "t2 \<longrightarrow>b* t3" using ih2 by blast
+  then show "t1 \<longrightarrow>b* t3" using ih1 beta_star1.bs1_trans by blast
+qed
+
+text {* 
+  The label ih2 cannot be got rid of in this way, because it is used 
+  two lines below and we cannot rearange them. We can still avoid the
+  label by feeding a sequence of facts into a proof using the 
+  "moreover"-chaining mechanism:
+
+   have "statement_1" \<dots>
+   moreover
+   have "statement_2" \<dots>
+   \<dots>
+   moreover
+   have "statement_n" \<dots>
+   ultimately have "statement" \<dots>
+
+  In this chain, all "statement_i" can be used in the proof of the final 
+  "statement". With this we can simplify our proof further to:
+*}
+
+lemma 
+  assumes a: "t1 \<longrightarrow>b* t2"
+  and     b: "t2 \<longrightarrow>b* t3"
+  shows "t1 \<longrightarrow>b* t3"
+using a b
+proof (induct)
+  case (bs1_refl t1)
+  show "t1 \<longrightarrow>b* t3" by fact
+next
+  case (bs1_trans t1 t2 t3')
+  have "t3' \<longrightarrow>b* t3 \<Longrightarrow> t2 \<longrightarrow>b* t3" by fact
+  moreover
+  have "t3' \<longrightarrow>b* t3" by fact
+  ultimately 
+  have "t2 \<longrightarrow>b* t3" by blast
+  moreover 
+  have "t1 \<longrightarrow>b t2" by fact
+  ultimately show "t1 \<longrightarrow>b* t3" using beta_star1.bs1_trans by blast
+qed
+
+
+text {* 
+  While automatic proof procedures in Isabelle are not able to prove statements
+  like "P = NP" assuming usual definitions for P and NP, they can automatically
+  discharge the lemmas we just proved. For this we only have to set up the induction
+  and auto will take care of the rest. This means we can write:
+*}
+
+lemma
+  assumes a: "t1 \<longrightarrow>b* t2" 
+  shows "t1 \<longrightarrow>b** t2"
+  using a
+by (induct) (auto intro: beta_star2.intros)
+
+lemma 
+  assumes a: "t1 \<longrightarrow>b* t2"
+  and     b: "t2 \<longrightarrow>b* t3"
+  shows "t1 \<longrightarrow>b* t3"
+using a b
+by (induct) (auto intro: beta_star1.intros)
+
+lemma
+  assumes a: "t1 \<longrightarrow>b** t2"
+  shows "t1 \<longrightarrow>b* t2"
+using a
+by (induct) (auto intro: bs1_trans2 beta_star1.intros)
+
+inductive
+  eval :: "lam \<Rightarrow> lam \<Rightarrow> bool" ("_ \<Down> _" [60, 60] 60) 
+where
+  e_Lam:  "Lam [x].t \<Down> Lam [x].t"
+| e_App:  "\<lbrakk>t1 \<Down> Lam [x].t; t2 \<Down> v'; t[x::=v'] \<Down> v\<rbrakk> \<Longrightarrow> App t1 t2 \<Down> v"
+
+declare eval.intros[intro]
+
+text {* 
+  Values are also defined using inductive. In our case values
+  are just lambda-abstractions. *}
+
+inductive
+  val :: "lam \<Rightarrow> bool" 
+where
+  v_Lam[intro]:   "val (Lam [x].t)"
+
+
+section {* Datatypes: Evaluation Contexts *}
+
+text {*
+
+  Datatypes can be defined in Isabelle as follows: we have to provide the name 
+  of the datatype and list its type-constructors. Each type-constructor needs 
+  to have the information about the types of its arguments, and optionally 
+  can also contain some information about pretty syntax. For example, we like
+  to write "\<box>" for holes.
+*}
+
+datatype ctx = 
+    Hole ("\<box>")  
+  | CAppL "ctx" "lam"
+  | CAppR "lam" "ctx"
+
+text {* Now Isabelle knows about: *}
+
+typ ctx
+term "\<box>"
+term "CAppL"
+term "CAppL \<box> (Var x)"
+
+text {* 
+
+  1.) MINI EXERCISE
+  -----------------
+
+  Try and see what happens if you apply a Hole to a Hole? 
+
+*}
+
+type_synonym ctxs = "ctx list"
+
+inductive
+  machine :: "lam \<Rightarrow> ctxs \<Rightarrow>lam \<Rightarrow> ctxs \<Rightarrow> bool" ("<_,_> \<mapsto> <_,_>" [60, 60, 60, 60] 60)
+where
+  m1[intro]: "<App t1 t2,Es> \<mapsto> <t1,(CAppL \<box> t2) # Es>"
+| m2[intro]: "val v \<Longrightarrow> <v,(CAppL \<box> t2) # Es> \<mapsto> <t2,(CAppR v \<box>) # Es>"
+| m3[intro]: "val v \<Longrightarrow> <v,(CAppR (Lam [x].t) \<box>) # Es> \<mapsto> <t[x ::= v],Es>"
+
+
+text {*
+  Since the machine defined above only performs a single reduction,
+  we need to define the transitive closure of this machine. *}
+
+inductive 
+  machines :: "lam \<Rightarrow> ctxs \<Rightarrow> lam \<Rightarrow> ctxs \<Rightarrow> bool" ("<_,_> \<mapsto>* <_,_>" [60, 60, 60, 60] 60)
+where
+  ms1[intro]: "<t,Es> \<mapsto>* <t,Es>"
+| ms2[intro]: "\<lbrakk><t1,Es1> \<mapsto> <t2,Es2>; <t2,Es2> \<mapsto>* <t3,Es3>\<rbrakk> \<Longrightarrow> <t1,Es1> \<mapsto>* <t3,Es3>"
+
+lemma 
+  assumes a: "<e1, Es1> \<mapsto>* <e2, Es2>" 
+  and     b: "<e2, Es2> \<mapsto>* <e3, Es3>"
+  shows "<e1, Es1> \<mapsto>* <e3, Es3>"
+using a b
+proof(induct)
+  case (ms1 e1 Es1)
+  have c: "<e1, Es1> \<mapsto>* <e3, Es3>" by fact
+  show "<e1, Es1> \<mapsto>* <e3, Es3>" sorry
+next
+  case (ms2 e1 Es1 e2 Es2 e2' Es2') 
+  have ih: "<e2', Es2'> \<mapsto>* <e3, Es3> \<Longrightarrow> <e2, Es2> \<mapsto>* <e3, Es3>" by fact
+  have d1: "<e2', Es2'> \<mapsto>* <e3, Es3>" by fact
+  have d2: "<e1, Es1> \<mapsto> <e2, Es2>" by fact
+  
+  show "<e1, Es1> \<mapsto>* <e3, Es3>" sorry
+qed
+
+text {* 
+  Just like gotos in the Basic programming language, labels can reduce 
+  the readability of proofs. Therefore one can use in Isar the notation
+  "then have" in order to feed a have-statement to the proof of 
+  the next have-statement. In the proof below this has been used
+  in order to get rid of the labels c and d1. 
+*}
+
+lemma 
+  assumes a: "<e1, Es1> \<mapsto>* <e2, Es2>" 
+  and     b: "<e2, Es2> \<mapsto>* <e3, Es3>"
+  shows "<e1, Es1> \<mapsto>* <e3, Es3>"
+using a b
+proof(induct)
+  case (ms1 e1 Es1)
+  show "<e1, Es1> \<mapsto>* <e3, Es3>" by fact
+next
+  case (ms2 e1 Es1 e2 Es2 e2' Es2')
+  have ih: "<e2', Es2'> \<mapsto>* <e3, Es3> \<Longrightarrow> <e2, Es2> \<mapsto>* <e3, Es3>" by fact
+  have "<e2', Es2'> \<mapsto>* <e3, Es3>" by fact
+  then have d3: "<e2, Es2> \<mapsto>* <e3, Es3>" using ih by simp
+  have d2: "<e1, Es1> \<mapsto> <e2, Es2>" by fact
+  show "<e1, Es1> \<mapsto>* <e3, Es3>" using d2 d3 by auto
+qed
+
+lemma 
+  assumes a: "<e1, Es1> \<mapsto>* <e2, Es2>" 
+  and     b: "<e2, Es2> \<mapsto>* <e3, Es3>"
+  shows "<e1, Es1> \<mapsto>* <e3, Es3>"
+using a b
+proof(induct)
+  case (ms1 e1 Es1)
+  show "<e1, Es1> \<mapsto>* <e3, Es3>" by fact
+next
+  case (ms2 e1 Es1 e2 Es2 e2' Es2')
+  have ih: "<e2', Es2'> \<mapsto>* <e3, Es3> \<Longrightarrow> <e2, Es2> \<mapsto>* <e3, Es3>" by fact
+  have "<e2', Es2'> \<mapsto>* <e3, Es3>" by fact
+  then have "<e2, Es2> \<mapsto>* <e3, Es3>" using ih by simp
+  moreover
+  have "<e1, Es1> \<mapsto> <e2, Es2>" by fact
+  ultimately show "<e1, Es1> \<mapsto>* <e3, Es3>" by auto
+qed
+
+
+lemma ms3[intro]:
+  assumes a: "<e1, Es1> \<mapsto>* <e2, Es2>" 
+  and     b: "<e2, Es2> \<mapsto>* <e3, Es3>"
+  shows "<e1, Es1> \<mapsto>* <e3, Es3>"
+using a b by (induct) (auto)
+
+lemma eval_to_val:
+  assumes a: "t \<Down> t'"
+  shows "val t'"
+using a by (induct) (auto)
+
+
+theorem 
+  assumes a: "t \<Down> t'"
+  shows "<t, []> \<mapsto>* <t', []>"
+using a 
+proof (induct)
+  case (e_Lam x t)
+  (* no assumptions *)
+  show "<Lam [x].t, []> \<mapsto>* <Lam [x].t, []>" sorry
+next
+  case (e_App t1 x t t2 v' v)
+  (* all assumptions in this case *)
+  have a1: "t1 \<Down> Lam [x].t" by fact
+  have ih1: "<t1, []> \<mapsto>* <Lam [x].t, []>" by fact
+  have a2: "t2 \<Down> v'" by fact
+  have ih2: "<t2, []> \<mapsto>* <v', []>" by fact
+  have a3: "t[x::=v'] \<Down> v" by fact
+  have ih3: "<t[x::=v'], []> \<mapsto>* <v, []>" by fact
+  (* your details *)
+  show "<App t1 t2, []> \<mapsto>* <v, []>" sorry
+qed
+
+text {* 
+  Again the automatic tools in Isabelle can discharge automatically 
+  of the routine work in these proofs. We can write: *}
+
+theorem eval_implies_machines_ctx:
+  assumes a: "t \<Down> t'"
+  shows "<t, Es> \<mapsto>* <t', Es>"
+using a
+by (induct arbitrary: Es)
+   (metis eval_to_val machine.intros ms1 ms2 ms3 v_Lam)+
+
+corollary eval_implies_machines:
+  assumes a: "t \<Down> t'"
+  shows "<t, []> \<mapsto>* <t', []>"
+using a eval_implies_machines_ctx by simp
+
+
+nominal_datatype ty =
+  tVar "string"
+| tArr "ty" "ty" ("_ \<rightarrow> _" [100, 100] 100)
+
+
+text {* 
+  Having defined them as nominal datatypes gives us additional
+  definitions and theorems that come with types (see below).
+  *}
+
+text {* 
+  We next define the type of typing contexts, a predicate that
+  defines valid contexts (i.e. lists that contain only unique
+  variables) and the typing judgement.
+
+*}
+
+type_synonym ty_ctx = "(name \<times> ty) list"
+
+inductive
+  valid :: "ty_ctx \<Rightarrow> bool"
+where
+  v1[intro]: "valid []"
+| v2[intro]: "\<lbrakk>valid \<Gamma>; atom x \<sharp> \<Gamma>\<rbrakk>\<Longrightarrow> valid ((x, T) # \<Gamma>)"
+
+inductive
+  typing :: "ty_ctx \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow> bool" ("_ \<turnstile> _ : _" [60, 60, 60] 60) 
+where
+  t_Var[intro]:  "\<lbrakk>valid \<Gamma>; (x, T) \<in> set \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Var x : T"
+| t_App[intro]:  "\<lbrakk>\<Gamma> \<turnstile> t1 : T1 \<rightarrow> T2; \<Gamma> \<turnstile> t2 : T1\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> App t1 t2 : T2"
+| t_Lam[intro]:  "\<lbrakk>atom x \<sharp> \<Gamma>; (x, T1) # \<Gamma> \<turnstile> t : T2\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Lam [x].t : T1 \<rightarrow> T2"
+
+
+text {*
+  The predicate x \<sharp> \<Gamma>, read as x fresh for \<Gamma>, is defined by Nominal Isabelle.
+  Freshness is defined for lambda-terms, products, lists etc. For example
+  we have:
+  *}
+
+lemma
+  fixes x::"name"
+  shows "atom x \<sharp> Lam [x].t"
+  and   "atom x \<sharp> (t1, t2) \<Longrightarrow> atom x \<sharp> App t1 t2"
+  and   "atom x \<sharp> Var y \<Longrightarrow> atom x \<sharp> y" 
+  and   "\<lbrakk>atom x \<sharp> t1; atom x \<sharp> t2\<rbrakk> \<Longrightarrow> atom x \<sharp> (t1, t2)"
+  and   "\<lbrakk>atom x \<sharp> l1; atom x \<sharp> l2\<rbrakk> \<Longrightarrow> atom x \<sharp> (l1 @ l2)"
+  and   "atom x \<sharp> y \<Longrightarrow> x \<noteq> y"
+  by (simp_all add: lam.fresh fresh_append fresh_at_base) 
+
+text {* We can also prove that every variable is fresh for a type *}
+
+lemma ty_fresh:
+  fixes x::"name"
+  and   T::"ty"
+  shows "atom x \<sharp> T"
+by (induct T rule: ty.induct)
+   (simp_all add: ty.fresh pure_fresh)
+
+text {* 
+  In order to state the weakening lemma in a convenient form, we overload
+  the subset-notation and define the abbreviation below. Abbreviations behave
+  like definitions, except that they are always automatically folded and
+  unfolded.
+*}
+
+abbreviation
+  "sub_ty_ctx" :: "ty_ctx \<Rightarrow> ty_ctx \<Rightarrow> bool" ("_ \<sqsubseteq> _" [60, 60] 60) 
+where
+  "\<Gamma>1 \<sqsubseteq> \<Gamma>2 \<equiv> \<forall>x. x \<in> set \<Gamma>1 \<longrightarrow> x \<in> set \<Gamma>2"
+
+text {***************************************************************** 
+
+  4.) Exercise
+  ------------
+
+  Fill in the details and give a proof of the weakening lemma. 
+
+*}
+
+lemma 
+  assumes a: "\<Gamma>1 \<turnstile> t : T"
+  and     b: "valid \<Gamma>2" 
+  and     c: "\<Gamma>1 \<sqsubseteq> \<Gamma>2"
+  shows "\<Gamma>2 \<turnstile> t : T"
+using a b c
+proof (induct arbitrary: \<Gamma>2)
+  case (t_Var \<Gamma>1 x T)
+  have a1: "valid \<Gamma>1" by fact
+  have a2: "(x, T) \<in> set \<Gamma>1" by fact
+  have a3: "valid \<Gamma>2" by fact
+  have a4: "\<Gamma>1 \<sqsubseteq> \<Gamma>2" by fact
+
+  show "\<Gamma>2 \<turnstile> Var x : T" sorry
+next
+  case (t_Lam x \<Gamma>1 T1 t T2) 
+  have ih: "\<And>\<Gamma>3. \<lbrakk>valid \<Gamma>3; (x, T1) # \<Gamma>1 \<sqsubseteq> \<Gamma>3\<rbrakk> \<Longrightarrow> \<Gamma>3 \<turnstile> t : T2" by fact
+  have a0: "atom x \<sharp> \<Gamma>1" by fact
+  have a1: "valid \<Gamma>2" by fact
+  have a2: "\<Gamma>1 \<sqsubseteq> \<Gamma>2" by fact
+
+  show "\<Gamma>2 \<turnstile> Lam [x].t : T1 \<rightarrow> T2" sorry
+qed (auto)
+
+
+text {* 
+  Despite the frequent claim that the weakening lemma is trivial,
+  routine or obvious, the proof in the lambda-case does not go 
+  smoothly through. Painful variable renamings seem to be necessary. 
+  But the proof using renamings is horribly complicated. It is really 
+  interesting whether people who claim this proof is  trivial, routine 
+  or obvious had this proof in mind. 
+
+  BTW: The following two commands help already with showing that validity 
+  and typing are invariant under variable (permutative) renamings. 
+*}
+
+equivariance valid
+equivariance typing
+
+lemma not_to_be_tried_at_home_weakening: 
+  assumes a: "\<Gamma>1 \<turnstile> t : T"
+  and     b: "valid \<Gamma>2" 
+  and     c: "\<Gamma>1 \<sqsubseteq> \<Gamma>2"
+  shows "\<Gamma>2 \<turnstile> t : T"
+using a b c
+proof (induct arbitrary: \<Gamma>2)
+  case (t_Lam x \<Gamma>1 T1 t T2) (* lambda case *)
+  have fc0: "atom x \<sharp> \<Gamma>1" by fact
+  have ih: "\<And>\<Gamma>3. \<lbrakk>valid \<Gamma>3; (x, T1) # \<Gamma>1 \<sqsubseteq> \<Gamma>3\<rbrakk> \<Longrightarrow> \<Gamma>3 \<turnstile> t : T2" by fact
+  obtain c::"name" where fc1: "atom c \<sharp> (x, t, \<Gamma>1, \<Gamma>2)" by (rule obtain_fresh)
+  have "Lam [c].((c \<leftrightarrow> x) \<bullet> t) = Lam [x].t" using fc1 (* we then alpha-rename the lambda-abstraction *)
+    by (auto simp add: lam.eq_iff Abs1_eq_iff flip_def)
+  moreover
+  have "\<Gamma>2 \<turnstile> Lam [c].((c \<leftrightarrow> x) \<bullet> t) : T1 \<rightarrow> T2" (* we can then alpha-rename our original goal *)
+  proof - 
+    (* we establish (x, T1) # \<Gamma>1 \<sqsubseteq> (x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2) and valid ((x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2)) *)
+    have "(x, T1) # \<Gamma>1 \<sqsubseteq> (x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2)" 
+    proof -
+      have "\<Gamma>1 \<sqsubseteq> \<Gamma>2" by fact
+      then have "(c \<leftrightarrow> x) \<bullet> ((x, T1) # \<Gamma>1 \<sqsubseteq> (x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2))" using fc0 fc1
+	by (perm_simp) (simp add: flip_fresh_fresh)
+      then show "(x, T1) # \<Gamma>1 \<sqsubseteq> (x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2)" by (rule permute_boolE)
+    qed
+    moreover 
+    have "valid ((x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2))" 
+    proof -
+      have "valid \<Gamma>2" by fact
+      then show "valid ((x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2))" using fc1
+	by (auto simp add: fresh_permute_left atom_eqvt valid.eqvt)	
+    qed
+    (* these two facts give us by induction hypothesis the following *)
+    ultimately have "(x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2) \<turnstile> t : T2" using ih by simp 
+    (* we now apply renamings to get to our goal *)
+    then have "(c \<leftrightarrow> x) \<bullet> ((x, T1) # ((c \<leftrightarrow> x) \<bullet> \<Gamma>2) \<turnstile> t : T2)" by (rule permute_boolI)
+    then have "(c, T1) # \<Gamma>2 \<turnstile> ((c \<leftrightarrow> x) \<bullet> t) : T2" using fc1
+      by (perm_simp) (simp add: flip_fresh_fresh ty_fresh)
+    then show "\<Gamma>2 \<turnstile> Lam [c].((c \<leftrightarrow> x) \<bullet> t) : T1 \<rightarrow> T2" using fc1 by auto
+  qed
+  ultimately show "\<Gamma>2 \<turnstile> Lam [x].t : T1 \<rightarrow> T2" by simp
+qed (auto) (* var and app cases *)
+
+
+text {* 
+  The remedy to the complicated proof of the weakening proof
+  shown above is to use a stronger induction principle that
+  has the usual variable convention already build in. The
+  following command derives this induction principle for us.
+  (We shall explain what happens here later.)
+
+*}
+
+nominal_inductive typing
+  avoids t_Lam: "x"
+  unfolding fresh_star_def
+  by (simp_all add: fresh_Pair lam.fresh ty_fresh)
+
+text {* Compare the two induction principles *}
+thm typing.induct
+thm typing.strong_induct
+
+text {* 
+  We can use the stronger induction principle by replacing
+  the line
+
+  proof (induct arbitrary: \<Gamma>2)
+
+  with 
+  
+  proof (nominal_induct avoiding: \<Gamma>2 rule: typing.strong_induct)
+
+  Try now the proof.
+
+*}
+  
+
+lemma weakening: 
+  assumes a: "\<Gamma>1 \<turnstile> t : T"
+  and     b: "valid \<Gamma>2" 
+  and     c: "\<Gamma>1 \<sqsubseteq> \<Gamma>2"
+  shows "\<Gamma>2 \<turnstile> t : T"
+using a b c
+proof (nominal_induct avoiding: \<Gamma>2 rule: typing.strong_induct)
+  case (t_Var \<Gamma>1 x T)  (* variable case *)
+  have "\<Gamma>1 \<sqsubseteq> \<Gamma>2" by fact 
+  moreover  
+  have "valid \<Gamma>2" by fact 
+  moreover 
+  have "(x, T)\<in> set \<Gamma>1" by fact
+  ultimately show "\<Gamma>2 \<turnstile> Var x : T" by auto
+next
+  case (t_Lam x \<Gamma>1 T1 t T2) 
+  have vc: "atom x \<sharp> \<Gamma>2" by fact   (* additional fact *)
+  have ih: "\<And>\<Gamma>3. \<lbrakk>valid \<Gamma>3; (x, T1) # \<Gamma>1 \<sqsubseteq> \<Gamma>3\<rbrakk> \<Longrightarrow> \<Gamma>3 \<turnstile> t : T2" by fact
+  have a0: "atom x \<sharp> \<Gamma>1" by fact
+  have a1: "valid \<Gamma>2" by fact
+  have a2: "\<Gamma>1 \<sqsubseteq> \<Gamma>2" by fact
+
+  show "\<Gamma>2 \<turnstile> Lam [x].t : T1 \<rightarrow> T2" sorry
+qed (auto) (* app case *)
+
+
+text {***************************************************************** 
+
+  Function Definitions: Filling a Lambda-Term into a Context
+  ----------------------------------------------------------
+
+  Many functions over datatypes can be defined by recursion on the
+  structure. For this purpose, Isabelle provides "fun". To use it one needs 
+  to give a name for the function, its type, optionally some pretty-syntax 
+  and then some equations defining the function. Like in "inductive",
+  "fun" expects that more than one such equation is separated by "|".
+
+*}
+
+fun
+  filling :: "ctx \<Rightarrow> lam \<Rightarrow> lam" ("_\<lbrakk>_\<rbrakk>" [100, 100] 100)
+where
+  "\<box>\<lbrakk>t\<rbrakk> = t"
+| "(CAppL E t')\<lbrakk>t\<rbrakk> = App (E\<lbrakk>t\<rbrakk>) t'"
+| "(CAppR t' E)\<lbrakk>t\<rbrakk> = App t' (E\<lbrakk>t\<rbrakk>)"
+
+text {* 
+  After this definition Isabelle will be able to simplify
+  statements like: *}
+
+lemma 
+  shows "(CAppL \<box> (Var x))\<lbrakk>Var y\<rbrakk> = App (Var y) (Var x)"
+  by simp
+
+
+fun 
+ ctx_compose :: "ctx \<Rightarrow> ctx \<Rightarrow> ctx" ("_ \<cdot> _" [101,100] 100)
+where
+  "\<box> \<cdot> E' = E'"
+| "(CAppL E t') \<cdot> E' = CAppL (E \<cdot> E') t'"
+| "(CAppR t' E) \<cdot> E' = CAppR t' (E \<cdot> E')"
+
+fun
+  ctx_composes :: "ctxs \<Rightarrow> ctx" ("_\<down>" [110] 110)
+where
+    "[]\<down> = \<box>"
+  | "(E # Es)\<down> = (Es\<down>) \<cdot> E"
+
+text {*  
+  Notice that we not just have given a pretty syntax for the functions, but
+  also some precedences..The numbers inside the [\<dots>] stand for the precedences
+  of the arguments; the one next to it the precedence of the whole term.
+  
+  This means we have to write (Es1 \<cdot> Es2) \<cdot> Es3 otherwise Es1 \<cdot> Es2 \<cdot> Es3 is
+  interpreted as Es1 \<cdot> (Es2 \<cdot> Es3).
+*}
+
+text {******************************************************************
+  
+  Structural Inductions over Contexts
+  ------------------------------------
+
+  So far we have had a look at an induction over an inductive predicate. 
+  Another important induction principle is structural inductions for 
+  datatypes. To illustrate structural inductions we prove some facts
+  about context composition, some of which we will need later on.
+
+*}
+
+text {******************************************************************
+
+  5.) EXERCISE
+  ------------
+
+  Complete the proof and remove the sorries.
+
+*}
+
+lemma ctx_compose:
+  shows "(E1 \<cdot> E2)\<lbrakk>t\<rbrakk> = E1\<lbrakk>E2\<lbrakk>t\<rbrakk>\<rbrakk>"
+proof (induct E1)
+  case Hole
+  show "\<box> \<cdot> E2\<lbrakk>t\<rbrakk> = \<box>\<lbrakk>E2\<lbrakk>t\<rbrakk>\<rbrakk>" sorry
+next
+  case (CAppL E1 t')
+  have ih: "(E1 \<cdot> E2)\<lbrakk>t\<rbrakk> = E1\<lbrakk>E2\<lbrakk>t\<rbrakk>\<rbrakk>" by fact
+  show "((CAppL E1 t') \<cdot> E2)\<lbrakk>t\<rbrakk> = (CAppL E1 t')\<lbrakk>E2\<lbrakk>t\<rbrakk>\<rbrakk>" sorry
+next
+  case (CAppR t' E1)
+  have ih: "(E1 \<cdot> E2)\<lbrakk>t\<rbrakk> = E1\<lbrakk>E2\<lbrakk>t\<rbrakk>\<rbrakk>" by fact
+  show "((CAppR t' E1) \<cdot> E2)\<lbrakk>t\<rbrakk> = (CAppR t' E1)\<lbrakk>E2\<lbrakk>t\<rbrakk>\<rbrakk>" sorry
+qed
+
+lemma neut_hole:
+  shows "E \<cdot> \<box> = E"
+by (induct E) (simp_all)
+
+lemma circ_assoc:
+  fixes E1 E2 E3::"ctx"
+  shows "(E1 \<cdot> E2) \<cdot> E3 = E1 \<cdot> (E2 \<cdot> E3)"
+by (induct E1) (simp_all)
+
+lemma
+  shows "(Es1 @ Es2)\<down> = (Es2\<down>) \<cdot> (Es1\<down>)"
+proof (induct Es1)
+  case Nil
+  show "([] @ Es2)\<down> = Es2\<down> \<cdot> []\<down>" sorry
+next
+  case (Cons E Es1)
+  have ih: "(Es1 @ Es2)\<down> = Es2\<down> \<cdot> Es1\<down>" by fact
+
+  show "((E # Es1) @ Es2)\<down> = Es2\<down> \<cdot> (E # Es1)\<down>" sorry
+qed
+
+
+text {* 
+  The last proof involves several steps of equational reasoning.
+  Isar provides some convenient means to express such equational 
+  reasoning in a much cleaner fashion using the "also have" 
+  construction. *}
+
+lemma 
+  shows "(Es1 @ Es2)\<down> = (Es2\<down>) \<cdot> (Es1\<down>)"
+proof (induct Es1)
+  case Nil
+  show "([] @ Es2)\<down> = Es2\<down> \<cdot> []\<down>" using neut_hole by simp
+next
+  case (Cons E Es1)
+  have ih: "(Es1 @ Es2)\<down> = Es2\<down> \<cdot> Es1\<down>" by fact
+  have "((E # Es1) @ Es2)\<down> = (Es1 @ Es2)\<down> \<cdot> E" by simp
+  also have "\<dots> = (Es2\<down> \<cdot> Es1\<down>) \<cdot> E" using ih by simp
+  also have "\<dots> = Es2\<down> \<cdot> (Es1\<down> \<cdot> E)" using circ_assoc by simp
+  also have "\<dots> = Es2\<down> \<cdot> (E # Es1)\<down>" by simp
+  finally show "((E # Es1) @ Es2)\<down> = Es2\<down> \<cdot> (E # Es1)\<down>" by simp
+qed
+
+text {******************************************************************
+  
+  Formalising Barendregt's Proof of the Substitution Lemma
+  --------------------------------------------------------
+
+  Barendregt's proof needs in the variable case a case distinction.
+  One way to do this in Isar is to use blocks. A block is some sequent
+  or reasoning steps enclosed in curly braces
+
+  { \<dots>
+
+    have "statement"
+  }
+
+  Such a block can contain local assumptions like
+
+  { assume "A"
+    assume "B"
+    \<dots>
+    have "C" by \<dots>
+  }
+
+  Where "C" is the last have-statement in this block. The behaviour 
+  of such a block to the 'outside' is the implication
+
+   \<lbrakk>A; B\<rbrakk> \<Longrightarrow> "C" 
+
+  Now if we want to prove a property "smth" using the case-distinctions
+  P\<^isub>1, P\<^isub>2 and P\<^isub>3 then we can use the following reasoning:
+
+    { assume "P\<^isub>1"
+      \<dots>
+      have "smth"
+    }
+    moreover
+    { assume "P\<^isub>2"
+      \<dots>
+      have "smth"
+    }
+    moreover
+    { assume "P\<^isub>3"
+      \<dots>
+      have "smth"
+    }
+    ultimately have "smth" by blast
+
+  The blocks establish the implications
+
+    P\<^isub>1 \<Longrightarrow> smth
+    P\<^isub>2 \<Longrightarrow> smth
+    P\<^isub>3 \<Longrightarrow> smth
+
+  If we know that P\<^isub>1, P\<^isub>2 and P\<^isub>3 cover all the cases, that is P\<^isub>1 \<or> P\<^isub>2 \<or> P\<^isub>3 is
+  true, then we have 'ultimately' established the property "smth" 
+  
+*}
+
+text {******************************************************************
+  
+  7.) Exercise
+  ------------
+
+  Fill in the cases 1.2 and 1.3 and the equational reasoning 
+  in the lambda-case.
+*}
+
+lemma forget:
+  shows "atom x \<sharp> t \<Longrightarrow> t[x ::= s] = t"
+apply(nominal_induct t avoiding: x s rule: lam.strong_induct)
+apply(auto simp add: lam.fresh fresh_at_base)
+done
+
+lemma fresh_fact:
+  fixes z::"name"
+  assumes a: "atom z \<sharp> s"
+  and b: "z = y \<or> atom z \<sharp> t"
+  shows "atom z \<sharp> t[y ::= s]"
+using a b
+apply (nominal_induct t avoiding: z y s rule: lam.strong_induct)
+apply (auto simp add: lam.fresh fresh_at_base)
+done
+
+thm forget
+thm fresh_fact
+
+lemma 
+  assumes a: "x \<noteq> y"
+  and     b: "atom x \<sharp> L"
+  shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
+using a b
+proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
+  case (Var z)
+  have a1: "x \<noteq> y" by fact
+  have a2: "atom x \<sharp> L" by fact
+  show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
+  proof -
+    { (*Case 1.1*)
+      assume c1: "z=x"
+      have "(1)": "?LHS = N[y::=L]" using c1 by simp
+      have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
+      have "?LHS = ?RHS" using "(1)" "(2)" by simp
+    }
+    moreover 
+    { (*Case 1.2*)
+      assume c2: "z = y" "z \<noteq> x" 
+      
+      have "?LHS = ?RHS" sorry
+    }
+    moreover 
+    { (*Case 1.3*)
+      assume c3: "z \<noteq> x" "z \<noteq> y"
+      
+      have "?LHS = ?RHS" sorry
+    }
+    ultimately show "?LHS = ?RHS" by blast
+  qed
+next
+  case (Lam z M1) (* case 2: lambdas *)
+  have ih: "\<lbrakk>x \<noteq> y; atom x \<sharp> L\<rbrakk> \<Longrightarrow> M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
+  have a1: "x \<noteq> y" by fact
+  have a2: "atom x \<sharp> L" by fact
+  have fs: "atom z \<sharp> x" "atom z \<sharp> y" "atom z \<sharp> N" "atom z \<sharp> L" by fact+
+  then have b: "atom z \<sharp> N[y::=L]" by (simp add: fresh_fact)
+  show "(Lam [z].M1)[x::=N][y::=L] = (Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS") 
+  proof - 
+    have "?LHS = \<dots>" sorry
+
+    also have "\<dots> = ?RHS" sorry
+    finally show "?LHS = ?RHS" by simp
+  qed
+next
+  case (App M1 M2) (* case 3: applications *)
+  then show "(App M1 M2)[x::=N][y::=L] = (App M1 M2)[y::=L][x::=N[y::=L]]" by simp
+qed
+
+text {* 
+  Again the strong induction principle enables Isabelle to find
+  the proof of the substitution lemma automatically. 
+*}
+
+lemma substitution_lemma_version:  
+  assumes asm: "x \<noteq> y" "atom x \<sharp> L"
+  shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
+  using asm 
+by (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
+   (auto simp add: fresh_fact forget)
+
+text {******************************************************************
+  
+  The CBV Reduction Relation (Small-Step Semantics) 
+  -------------------------------------------------
+
+  In order to establish the property that the CK Machine
+  calculates a nomrmalform which corresponds to the
+  evaluation relation, we introduce the call-by-value
+  small-step semantics.
+
+*}
+
+inductive
+  cbv :: "lam \<Rightarrow> lam \<Rightarrow> bool" ("_ \<longrightarrow>cbv _" [60, 60] 60) 
+where
+  cbv1: "\<lbrakk>val v; atom x \<sharp> v\<rbrakk> \<Longrightarrow> App (Lam [x].t) v \<longrightarrow>cbv t[x::=v]"
+| cbv2[intro]: "t \<longrightarrow>cbv t' \<Longrightarrow> App t t2 \<longrightarrow>cbv App t' t2"
+| cbv3[intro]: "t \<longrightarrow>cbv t' \<Longrightarrow> App t2 t \<longrightarrow>cbv App t2 t'"
+
+equivariance val
+equivariance cbv
+nominal_inductive cbv
+  avoids cbv1: "x"
+  unfolding fresh_star_def
+  by (simp_all add: lam.fresh Abs_fresh_iff fresh_Pair fresh_fact)
+
+text {*
+  In order to satisfy the vc-condition we have to formulate
+  this relation with the additional freshness constraint
+  x\<sharp>v. Though this makes the definition vc-ompatible, it
+  makes the definition less useful. We can with some pain
+  show that the more restricted rule is equivalent to the
+  usual rule. *}
+
+lemma subst_rename: 
+  assumes a: "atom y \<sharp> t"
+  shows "t[x ::= s] = ((y \<leftrightarrow> x) \<bullet>t)[y ::= s]"
+using a 
+apply (nominal_induct t avoiding: x y s rule: lam.strong_induct)
+apply (auto simp add: lam.fresh fresh_at_base)
+done
+
+thm subst_rename
+
+lemma better_cbv1[intro]: 
+  assumes a: "val v" 
+  shows "App (Lam [x].t) v \<longrightarrow>cbv t[x::=v]"
+proof -
+  obtain y::"name" where fs: "atom y \<sharp> (x, t, v)" by (rule obtain_fresh)
+  have "App (Lam [x].t) v = App (Lam [y].((y \<leftrightarrow> x) \<bullet> t)) v" using fs
+    by (auto simp add: lam.eq_iff Abs1_eq_iff' flip_def fresh_Pair fresh_at_base)
+  also have "\<dots> \<longrightarrow>cbv  ((y \<leftrightarrow> x) \<bullet> t)[y ::= v]" using fs a by (auto intro: cbv1)
+  also have "\<dots> = t[x ::= v]" using fs by (simp add: subst_rename[symmetric])
+  finally show "App (Lam [x].t) v \<longrightarrow>cbv t[x ::= v]" by simp
+qed
+
+text {*
+  The transitive closure of the cbv-reduction relation: *}
+
+inductive 
+  "cbvs" :: "lam \<Rightarrow> lam \<Rightarrow> bool" (" _ \<longrightarrow>cbv* _" [60, 60] 60)
+where
+  cbvs1[intro]: "e \<longrightarrow>cbv* e"
+| cbvs2[intro]: "\<lbrakk>e1\<longrightarrow>cbv e2; e2 \<longrightarrow>cbv* e3\<rbrakk> \<Longrightarrow> e1 \<longrightarrow>cbv* e3"
+
+lemma cbvs3[intro]:
+  assumes a: "e1 \<longrightarrow>cbv* e2" "e2 \<longrightarrow>cbv* e3"
+  shows "e1 \<longrightarrow>cbv* e3"
+using a by (induct) (auto) 
+
+text {******************************************************************
+  
+  8.) Exercise
+  ------------
+
+  If more simple exercises are needed, then complete the following proof. 
+
+*}
+
+lemma cbv_in_ctx:
+  assumes a: "t \<longrightarrow>cbv t'"
+  shows "E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>"
+using a
+proof (induct E)
+  case Hole
+  have "t \<longrightarrow>cbv t'" by fact
+  then show "\<box>\<lbrakk>t\<rbrakk> \<longrightarrow>cbv \<box>\<lbrakk>t'\<rbrakk>" sorry
+next
+  case (CAppL E s)
+  have ih: "t \<longrightarrow>cbv t' \<Longrightarrow> E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" by fact
+  have a: "t \<longrightarrow>cbv t'" by fact
+  show "(CAppL E s)\<lbrakk>t\<rbrakk> \<longrightarrow>cbv (CAppL E s)\<lbrakk>t'\<rbrakk>" sorry
+next
+  case (CAppR s E)
+  have ih: "t \<longrightarrow>cbv t' \<Longrightarrow> E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" by fact
+  have a: "t \<longrightarrow>cbv t'" by fact
+  show "(CAppR s E)\<lbrakk>t\<rbrakk> \<longrightarrow>cbv (CAppR s E)\<lbrakk>t'\<rbrakk>" sorry
+qed
+
+  
+text {******************************************************************
+  
+  9.) Exercise
+  ------------
+
+  The point of the cbv-reduction was that we can easily relatively 
+  establish the follwoing property:
+
+*}
+
+lemma machine_implies_cbvs_ctx:
+  assumes a: "<e, Es> \<mapsto> <e', Es'>"
+  shows "(Es\<down>)\<lbrakk>e\<rbrakk> \<longrightarrow>cbv* (Es'\<down>)\<lbrakk>e'\<rbrakk>"
+using a 
+proof (induct)
+  case (m1 t1 t2 Es)
+
+  show "Es\<down>\<lbrakk>App t1 t2\<rbrakk> \<longrightarrow>cbv* ((CAppL \<box> t2) # Es)\<down>\<lbrakk>t1\<rbrakk>"  sorry
+next
+  case (m2 v t2 Es)
+  have "val v" by fact
+
+  show "((CAppL \<box> t2) # Es)\<down>\<lbrakk>v\<rbrakk> \<longrightarrow>cbv* (CAppR v \<box> # Es)\<down>\<lbrakk>t2\<rbrakk>" sorry
+next
+  case (m3 v x t Es)
+  have "val v" by fact
+ 
+  show "(((CAppR (Lam [x].t) \<box>) # Es)\<down>)\<lbrakk>v\<rbrakk> \<longrightarrow>cbv* (Es\<down>)\<lbrakk>(t[x ::= v])\<rbrakk>" sorry
+qed
+
+text {* 
+  It is not difficult to extend the lemma above to
+  arbitrary reductions sequences of the CK machine. *}
+
+lemma machines_implies_cbvs_ctx:
+  assumes a: "<e, Es> \<mapsto>* <e', Es'>"
+  shows "(Es\<down>)\<lbrakk>e\<rbrakk> \<longrightarrow>cbv* (Es'\<down>)\<lbrakk>e'\<rbrakk>"
+using a 
+by (induct) (auto dest: machine_implies_cbvs_ctx)
+
+text {* 
+  So whenever we let the CL machine start in an initial
+  state and it arrives at a final state, then there exists
+  a corresponding cbv-reduction sequence. *}
+
+corollary machines_implies_cbvs:
+  assumes a: "<e, []> \<mapsto>* <e', []>"
+  shows "e \<longrightarrow>cbv* e'"
+using a by (auto dest: machines_implies_cbvs_ctx)
+
+text {*
+  We now want to relate the cbv-reduction to the evaluation
+  relation. For this we need two auxiliary lemmas. *}
+
+lemma eval_val:
+  assumes a: "val t"
+  shows "t \<Down> t"
+using a by (induct) (auto)
+
+lemma e_App_elim:
+  assumes a: "App t1 t2 \<Down> v"
+  shows "\<exists>x t v'. t1 \<Down> Lam [x].t \<and> t2 \<Down> v' \<and> t[x::=v'] \<Down> v"
+using a by (cases) (auto simp add: lam.eq_iff lam.distinct) 
+
+text {******************************************************************
+  
+  10.) Exercise
+  -------------
+
+  Complete the first case in the proof below. 
+
+*}
+
+lemma cbv_eval:
+  assumes a: "t1 \<longrightarrow>cbv t2" "t2 \<Down> t3"
+  shows "t1 \<Down> t3"
+using a
+proof(induct arbitrary: t3)
+  case (cbv1 v x t t3)
+  have a1: "val v" by fact
+  have a2: "t[x ::= v] \<Down> t3" by fact
+
+  show "App (Lam [x].t) v \<Down> t3" sorry
+next
+  case (cbv2 t t' t2 t3)
+  have ih: "\<And>t3. t' \<Down> t3 \<Longrightarrow> t \<Down> t3" by fact
+  have "App t' t2 \<Down> t3" by fact
+  then obtain x t'' v' 
+    where a1: "t' \<Down> Lam [x].t''" 
+      and a2: "t2 \<Down> v'" 
+      and a3: "t''[x ::= v'] \<Down> t3" using e_App_elim by blast
+  have "t \<Down>  Lam [x].t''" using ih a1 by auto 
+  then show "App t t2 \<Down> t3" using a2 a3 by auto
+qed (auto dest!: e_App_elim)
+
+
+text {* 
+  Next we extend the lemma above to arbitray initial
+  sequences of cbv-reductions. *}
+
+lemma cbvs_eval:
+  assumes a: "t1 \<longrightarrow>cbv* t2" "t2 \<Down> t3"
+  shows "t1 \<Down> t3"
+using a by (induct) (auto intro: cbv_eval)
+
+text {* 
+  Finally, we can show that if from a term t we reach a value 
+  by a cbv-reduction sequence, then t evaluates to this value. *}
+
+lemma cbvs_implies_eval:
+  assumes a: "t \<longrightarrow>cbv* v" "val v"
+  shows "t \<Down> v"
+using a
+by (induct) (auto intro: eval_val cbvs_eval)
+
+text {* 
+  All facts tied together give us the desired property about
+  K machines. *}
+
+theorem machines_implies_eval:
+  assumes a: "<t1, []> \<mapsto>* <t2, []>" 
+  and     b: "val t2" 
+  shows "t1 \<Down> t2"
+proof -
+  have "t1 \<longrightarrow>cbv* t2" using a by (simp add: machines_implies_cbvs)
+  then show "t1 \<Down> t2" using b by (simp add: cbvs_implies_eval)
+qed
+
+lemma valid_elim:
+  assumes a: "valid ((x, T) # \<Gamma>)"
+  shows "atom x \<sharp> \<Gamma> \<and> valid \<Gamma>"
+using a by (cases) (auto)
+
+lemma valid_insert:
+  assumes a: "valid (\<Delta> @ [(x, T)] @ \<Gamma>)"
+  shows "valid (\<Delta> @ \<Gamma>)" 
+using a
+by (induct \<Delta>)
+   (auto simp add: fresh_append fresh_Cons dest!: valid_elim)
+
+lemma fresh_list: 
+  shows "atom y \<sharp> xs = (\<forall>x \<in> set xs. atom y \<sharp> x)"
+by (induct xs) (simp_all add: fresh_Nil fresh_Cons)
+
+lemma context_unique:
+  assumes a1: "valid \<Gamma>"
+  and     a2: "(x, T) \<in> set \<Gamma>"
+  and     a3: "(x, U) \<in> set \<Gamma>"
+  shows "T = U" 
+using a1 a2 a3
+by (induct) (auto simp add: fresh_list fresh_Pair fresh_at_base)
+
+lemma type_substitution_aux:
+  assumes a: "(\<Delta> @ [(x, T')] @ \<Gamma>) \<turnstile> e : T"
+  and     b: "\<Gamma> \<turnstile> e' : T'"
+  shows "(\<Delta> @ \<Gamma>) \<turnstile> e[x ::= e'] : T" 
+using a b 
+proof (nominal_induct \<Gamma>'\<equiv>"\<Delta> @ [(x, T')] @ \<Gamma>" e T avoiding: x e' \<Delta> rule: typing.strong_induct)
+  case (t_Var y T x e' \<Delta>)
+  have a1: "valid (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact
+  have a2: "(y,T) \<in> set (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact 
+  have a3: "\<Gamma> \<turnstile> e' : T'" by fact
+  from a1 have a4: "valid (\<Delta> @ \<Gamma>)" by (rule valid_insert)
+  { assume eq: "x = y"
+    from a1 a2 have "T = T'" using eq by (auto intro: context_unique)
+    with a3 have "\<Delta> @ \<Gamma> \<turnstile> Var y[x::=e'] : T" using eq a4 by (auto intro: weakening)
+  }
+  moreover
+  { assume ineq: "x \<noteq> y"
+    from a2 have "(y, T) \<in> set (\<Delta> @ \<Gamma>)" using ineq by simp
+    then have "\<Delta> @ \<Gamma> \<turnstile> Var y[x::=e'] : T" using ineq a4 by auto
+  }
+  ultimately show "\<Delta> @ \<Gamma> \<turnstile> Var y[x::=e'] : T" by blast
+qed (force simp add: fresh_append fresh_Cons)+
+
+corollary type_substitution:
+  assumes a: "(x,T') # \<Gamma> \<turnstile> e : T"
+  and     b: "\<Gamma> \<turnstile> e' : T'"
+  shows "\<Gamma> \<turnstile> e[x::=e'] : T"
+using a b type_substitution_aux[where \<Delta>="[]"]
+by (auto)
+
+lemma t_App_elim:
+  assumes a: "\<Gamma> \<turnstile> App t1 t2 : T"
+  shows "\<exists>T'. \<Gamma> \<turnstile> t1 : T' \<rightarrow> T \<and> \<Gamma> \<turnstile> t2 : T'"
+using a
+by (cases) (auto simp add: lam.eq_iff lam.distinct)
+
+lemma t_Lam_elim:
+  assumes ty: "\<Gamma> \<turnstile> Lam [x].t : T" 
+  and     fc: "atom x \<sharp> \<Gamma>" 
+  shows "\<exists>T1 T2. T = T1 \<rightarrow> T2 \<and> (x, T1) # \<Gamma> \<turnstile> t : T2"
+using ty fc
+apply(cases)
+apply(auto simp add: lam.eq_iff lam.distinct ty.eq_iff)
+apply(auto simp add: Abs1_eq_iff)
+apply(rule_tac p="(x \<leftrightarrow> xa)" in permute_boolE)
+apply(perm_simp)
+apply(simp add: flip_def swap_fresh_fresh ty_fresh)
+done
+
+theorem cbv_type_preservation:
+  assumes a: "t \<longrightarrow>cbv t'"
+  and     b: "\<Gamma> \<turnstile> t : T" 
+  shows "\<Gamma> \<turnstile> t' : T"
+using a b
+by (nominal_induct avoiding: \<Gamma> T rule: cbv.strong_induct)
+   (auto dest!: t_Lam_elim t_App_elim simp add: type_substitution ty.eq_iff)
+
+corollary cbvs_type_preservation:
+  assumes a: "t \<longrightarrow>cbv* t'"
+  and     b: "\<Gamma> \<turnstile> t : T" 
+  shows "\<Gamma> \<turnstile> t' : T"
+using a b
+by (induct) (auto intro: cbv_type_preservation)
+
+text {* 
+  The Type-Preservation Property for the Machine and Evaluation Relation. *}
+
+theorem machine_type_preservation:
+  assumes a: "<t, []> \<mapsto>* <t', []>"
+  and     b: "\<Gamma> \<turnstile> t : T" 
+  shows "\<Gamma> \<turnstile> t' : T"
+proof -
+  from a have "t \<longrightarrow>cbv* t'" by (simp add: machines_implies_cbvs)
+  then show "\<Gamma> \<turnstile> t' : T" using b by (simp add: cbvs_type_preservation)
+qed
+
+theorem eval_type_preservation:
+  assumes a: "t \<Down> t'"
+  and     b: "\<Gamma> \<turnstile> t : T" 
+  shows "\<Gamma> \<turnstile> t' : T"
+proof -
+  from a have "<t, []> \<mapsto>* <t', []>" by (simp add: eval_implies_machines)
+  then show "\<Gamma> \<turnstile> t' : T" using b by (simp add: machine_type_preservation)
+qed
+
+text {* The Progress Property *}
+
+lemma canonical_tArr:
+  assumes a: "[] \<turnstile> t : T1 \<rightarrow> T2"
+  and     b: "val t"
+  shows "\<exists>x t'. t = Lam [x].t'"
+using b a by (induct) (auto) 
+
+theorem progress:
+  assumes a: "[] \<turnstile> t : T"
+  shows "(\<exists>t'. t \<longrightarrow>cbv t') \<or> (val t)"
+using a
+by (induct \<Gamma>\<equiv>"[]::ty_ctx" t T)
+   (auto intro: cbv.intros dest!: canonical_tArr)
+
+
+
+end  
+