Nominal/Ex/SFT/Theorem.thy
changeset 3175 52730e5ec8cb
parent 3088 5e74bd87bcda
--- a/Nominal/Ex/SFT/Theorem.thy	Wed May 23 23:57:27 2012 +0100
+++ b/Nominal/Ex/SFT/Theorem.thy	Thu May 24 10:17:32 2012 +0200
@@ -1,15 +1,15 @@
-header {* The main lemma about Num and the Second Fixed Point Theorem *}
+header {* The main lemma about NUM and the Second Fixed Point Theorem *}
 
 theory Theorem imports Consts begin
 
-lemmas [simp] = b3[OF bI] b1 b4 b5 supp_Num[unfolded Num_def supp_ltgt] Num_def lam.fresh[unfolded fresh_def] fresh_def b6
+lemmas [simp] = b3[OF bI] b1 b4 b5 supp_NUM[unfolded NUM_def supp_ltgt] NUM_def lam.fresh[unfolded fresh_def] fresh_def b6
 lemmas app = Ltgt1_app
 
-lemma Num:
-  shows "Num \<cdot> \<lbrace>M\<rbrace> \<approx> \<lbrace>\<lbrace>M\<rbrace>\<rbrace>"
+lemma NUM:
+  shows "NUM \<cdot> \<lbrace>M\<rbrace> \<approx> \<lbrace>\<lbrace>M\<rbrace>\<rbrace>"
 proof (induct M rule: lam.induct)
   case (Var n)
-  have "Num \<cdot> \<lbrace>Var n\<rbrace> = Num \<cdot> (VAR \<cdot> Var n)" by simp
+  have "NUM \<cdot> \<lbrace>Var n\<rbrace> = NUM \<cdot> (VAR \<cdot> Var n)" by simp
   also have "... = \<guillemotleft>[\<guillemotleft>[A1,A2,A3]\<guillemotright>]\<guillemotright> \<cdot> (VAR \<cdot> Var n)" by simp
   also have "... \<approx> VAR \<cdot> Var n \<cdot> \<guillemotleft>[A1,A2,A3]\<guillemotright>" using app .
   also have "... \<approx> \<guillemotleft>[A1,A2,A3]\<guillemotright> \<cdot> Umn 2 2 \<cdot> Var n \<cdot> \<guillemotleft>[A1,A2,A3]\<guillemotright>" using VAR_app .
@@ -17,50 +17,50 @@
   also have "... \<approx> F1 \<cdot> Var n" using A_app(1) .
   also have "... \<approx> APP \<cdot> \<lbrace>VAR\<rbrace> \<cdot> (VAR \<cdot> Var n)" using F_app(1) .
   also have "... = \<lbrace>\<lbrace>Var n\<rbrace>\<rbrace>" by simp
-  finally show "Num \<cdot> \<lbrace>Var n\<rbrace> \<approx> \<lbrace>\<lbrace>Var n\<rbrace>\<rbrace>".
+  finally show "NUM \<cdot> \<lbrace>Var n\<rbrace> \<approx> \<lbrace>\<lbrace>Var n\<rbrace>\<rbrace>".
 next
   case (App M N)
-  assume IH: "Num \<cdot> \<lbrace>M\<rbrace> \<approx> \<lbrace>\<lbrace>M\<rbrace>\<rbrace>" "Num \<cdot> \<lbrace>N\<rbrace> \<approx> \<lbrace>\<lbrace>N\<rbrace>\<rbrace>"
-  have "Num \<cdot> \<lbrace>M \<cdot> N\<rbrace> = Num \<cdot> (APP \<cdot> \<lbrace>M\<rbrace> \<cdot> \<lbrace>N\<rbrace>)" by simp
+  assume IH: "NUM \<cdot> \<lbrace>M\<rbrace> \<approx> \<lbrace>\<lbrace>M\<rbrace>\<rbrace>" "NUM \<cdot> \<lbrace>N\<rbrace> \<approx> \<lbrace>\<lbrace>N\<rbrace>\<rbrace>"
+  have "NUM \<cdot> \<lbrace>M \<cdot> N\<rbrace> = NUM \<cdot> (APP \<cdot> \<lbrace>M\<rbrace> \<cdot> \<lbrace>N\<rbrace>)" by simp
   also have "... = \<guillemotleft>[\<guillemotleft>[A1,A2,A3]\<guillemotright>]\<guillemotright> \<cdot> (APP \<cdot> \<lbrace>M\<rbrace> \<cdot> \<lbrace>N\<rbrace>)" by simp
   also have "... \<approx> APP \<cdot> \<lbrace>M\<rbrace> \<cdot> \<lbrace>N\<rbrace> \<cdot> \<guillemotleft>[A1,A2,A3]\<guillemotright>" using app .
   also have "... \<approx> \<guillemotleft>[A1,A2,A3]\<guillemotright> \<cdot> Umn 2 1 \<cdot> \<lbrace>M\<rbrace> \<cdot> \<lbrace>N\<rbrace> \<cdot> \<guillemotleft>[A1,A2,A3]\<guillemotright>" using APP_app .
   also have "... \<approx> A2 \<cdot> \<lbrace>M\<rbrace> \<cdot> \<lbrace>N\<rbrace> \<cdot> \<guillemotleft>[A1,A2,A3]\<guillemotright>" using U_app by simp
-  also have "... \<approx> F2 \<cdot> \<lbrace>M\<rbrace> \<cdot> \<lbrace>N\<rbrace> \<cdot> Num" using A_app(2) by simp
-  also have "... \<approx> APP \<cdot> (APP \<cdot> \<lbrace>APP\<rbrace> \<cdot> (Num \<cdot> \<lbrace>M\<rbrace>)) \<cdot> (Num \<cdot> \<lbrace>N\<rbrace>)" using F_app(2) .
-  also have "... \<approx> APP \<cdot> (APP \<cdot> \<lbrace>APP\<rbrace> \<cdot> (\<lbrace>\<lbrace>M\<rbrace>\<rbrace>)) \<cdot> (Num \<cdot> \<lbrace>N\<rbrace>)" using IH by simp
+  also have "... \<approx> F2 \<cdot> \<lbrace>M\<rbrace> \<cdot> \<lbrace>N\<rbrace> \<cdot> NUM" using A_app(2) by simp
+  also have "... \<approx> APP \<cdot> (APP \<cdot> \<lbrace>APP\<rbrace> \<cdot> (NUM \<cdot> \<lbrace>M\<rbrace>)) \<cdot> (NUM \<cdot> \<lbrace>N\<rbrace>)" using F_app(2) .
+  also have "... \<approx> APP \<cdot> (APP \<cdot> \<lbrace>APP\<rbrace> \<cdot> (\<lbrace>\<lbrace>M\<rbrace>\<rbrace>)) \<cdot> (NUM \<cdot> \<lbrace>N\<rbrace>)" using IH by simp
   also have "... \<approx> \<lbrace>\<lbrace>M \<cdot> N\<rbrace>\<rbrace>" using IH by simp
-  finally show "Num \<cdot> \<lbrace>M \<cdot> N\<rbrace> \<approx> \<lbrace>\<lbrace>M \<cdot> N\<rbrace>\<rbrace>".
+  finally show "NUM \<cdot> \<lbrace>M \<cdot> N\<rbrace> \<approx> \<lbrace>\<lbrace>M \<cdot> N\<rbrace>\<rbrace>".
 next
   case (Lam x P)
-  assume IH: "Num \<cdot> \<lbrace>P\<rbrace> \<approx> \<lbrace>\<lbrace>P\<rbrace>\<rbrace>"
-  have "Num \<cdot> \<lbrace>\<integral> x. P\<rbrace> = Num \<cdot> (Abs \<cdot> \<integral> x. \<lbrace>P\<rbrace>)" by simp
+  assume IH: "NUM \<cdot> \<lbrace>P\<rbrace> \<approx> \<lbrace>\<lbrace>P\<rbrace>\<rbrace>"
+  have "NUM \<cdot> \<lbrace>\<integral> x. P\<rbrace> = NUM \<cdot> (Abs \<cdot> \<integral> x. \<lbrace>P\<rbrace>)" by simp
   also have "... = \<guillemotleft>[\<guillemotleft>[A1,A2,A3]\<guillemotright>]\<guillemotright> \<cdot> (Abs \<cdot> \<integral> x. \<lbrace>P\<rbrace>)" by simp
   also have "... \<approx> Abs \<cdot> (\<integral> x. \<lbrace>P\<rbrace>) \<cdot> \<guillemotleft>[A1,A2,A3]\<guillemotright>" using app .
   also have "... \<approx> \<guillemotleft>[A1,A2,A3]\<guillemotright> \<cdot> Umn 2 0 \<cdot> (\<integral> x. \<lbrace>P\<rbrace>) \<cdot> \<guillemotleft>[A1,A2,A3]\<guillemotright>" using Abs_app .
   also have "... \<approx> A3 \<cdot> (\<integral> x. \<lbrace>P\<rbrace>) \<cdot> \<guillemotleft>[A1,A2,A3]\<guillemotright>" using U_app by simp
   also have "... \<approx> F3 \<cdot> (\<integral> x. \<lbrace>P\<rbrace>) \<cdot> \<guillemotleft>[\<guillemotleft>[A1,A2,A3]\<guillemotright>]\<guillemotright>" using A_app(3) .
-  also have "... = F3 \<cdot> (\<integral> x. \<lbrace>P\<rbrace>) \<cdot> Num" by simp
-  also have "... \<approx> APP \<cdot> \<lbrace>Abs\<rbrace> \<cdot> (Abs \<cdot> \<integral> x. (Num \<cdot> ((\<integral> x. \<lbrace>P\<rbrace>) \<cdot> Var x)))" by (rule F3_app) simp_all
-  also have "... \<approx> APP \<cdot> \<lbrace>Abs\<rbrace> \<cdot> (Abs \<cdot> \<integral> x. (Num \<cdot> \<lbrace>P\<rbrace>))" using beta_app by simp
+  also have "... = F3 \<cdot> (\<integral> x. \<lbrace>P\<rbrace>) \<cdot> NUM" by simp
+  also have "... \<approx> APP \<cdot> \<lbrace>Abs\<rbrace> \<cdot> (Abs \<cdot> \<integral> x. (NUM \<cdot> ((\<integral> x. \<lbrace>P\<rbrace>) \<cdot> Var x)))" by (rule F3_app) simp_all
+  also have "... \<approx> APP \<cdot> \<lbrace>Abs\<rbrace> \<cdot> (Abs \<cdot> \<integral> x. (NUM \<cdot> \<lbrace>P\<rbrace>))" using beta_app by simp
   also have "... \<approx> APP \<cdot> \<lbrace>Abs\<rbrace> \<cdot> (Abs \<cdot> \<integral> x. \<lbrace>\<lbrace>P\<rbrace>\<rbrace>)" using IH by simp
   also have "... = \<lbrace>\<lbrace>\<integral> x. P\<rbrace>\<rbrace>" by simp
-  finally show "Num \<cdot> \<lbrace>\<integral> x. P\<rbrace> \<approx> \<lbrace>\<lbrace>\<integral> x. P\<rbrace>\<rbrace>" .
+  finally show "NUM \<cdot> \<lbrace>\<integral> x. P\<rbrace> \<approx> \<lbrace>\<lbrace>\<integral> x. P\<rbrace>\<rbrace>" .
 qed
 
-lemmas [simp] = Ap Num
-lemmas [simp del] = fresh_def Num_def
+lemmas [simp] = Ap NUM
+lemmas [simp del] = fresh_def NUM_def
 
 theorem SFP:
   fixes F :: lam
   shows "\<exists>X. X \<approx> F \<cdot> \<lbrace>X\<rbrace>"
 proof -
   obtain x :: name where [simp]:"atom x \<sharp> F" using obtain_fresh by blast
-  def W \<equiv> "\<integral>x. (F \<cdot> (APP \<cdot> Var x \<cdot> (Num \<cdot> Var x)))"
+  def W \<equiv> "\<integral>x. (F \<cdot> (APP \<cdot> Var x \<cdot> (NUM \<cdot> Var x)))"
   def X \<equiv> "W \<cdot> \<lbrace>W\<rbrace>"
   have a: "X = W \<cdot> \<lbrace>W\<rbrace>" unfolding X_def ..
-  also have "... = (\<integral>x. (F \<cdot> (APP \<cdot> Var x \<cdot> (Num \<cdot> Var x)))) \<cdot> \<lbrace>W\<rbrace>" unfolding W_def ..
-  also have "... \<approx> F \<cdot> (APP \<cdot> \<lbrace>W\<rbrace> \<cdot> (Num \<cdot> \<lbrace>W\<rbrace>))" by simp
+  also have "... = (\<integral>x. (F \<cdot> (APP \<cdot> Var x \<cdot> (NUM \<cdot> Var x)))) \<cdot> \<lbrace>W\<rbrace>" unfolding W_def ..
+  also have "... \<approx> F \<cdot> (APP \<cdot> \<lbrace>W\<rbrace> \<cdot> (NUM \<cdot> \<lbrace>W\<rbrace>))" by simp
   also have "... \<approx> F \<cdot> (APP \<cdot> \<lbrace>W\<rbrace> \<cdot> \<lbrace>\<lbrace>W\<rbrace>\<rbrace>)" by simp
   also have "... \<approx> F \<cdot> \<lbrace>W \<cdot> \<lbrace>W\<rbrace>\<rbrace>" by simp
   also have "... = F \<cdot> \<lbrace>X\<rbrace>" unfolding X_def ..