--- a/Quot/Nominal/LamEx.thy Wed Jan 27 18:06:14 2010 +0100
+++ b/Quot/Nominal/LamEx.thy Thu Jan 28 01:24:09 2010 +0100
@@ -243,13 +243,6 @@
apply(simp)
done
-(* PROBABLY NOT TRUE !!! needed for lifting
-lemma alpha_fresh:
- assumes a: "t \<approx> s"
- shows "a\<sharp>t \<Longrightarrow> a\<sharp>s"
-using a
-apply(induct)
-*)
quotient_type lam = rlam / alpha
by (rule alpha_equivp)
@@ -305,13 +298,6 @@
done
-
-(* NOT SURE see above
-lemma fresh_rsp:
- "(op = ===> alpha ===> op =) fresh fresh"
- apply(auto)
-*)
-
section {* lifted theorems *}
lemma lam_induct:
@@ -375,6 +361,7 @@
\<Longrightarrow> P"
by (lifting alpha.cases)
+(* not sure whether needed *)
lemma alpha_induct:
"\<lbrakk>qx = qxa; \<And>a b. a = b \<Longrightarrow> qxb (Var a) (Var b);
\<And>x xa xb xc. \<lbrakk>x = xa; qxb x xa; xb = xc; qxb xb xc\<rbrakk> \<Longrightarrow> qxb (App x xb) (App xa xc);
@@ -450,20 +437,69 @@
done
(* needs thinking *)
-lemma lam_supp:
- shows "supp (Lam x t) = ((supp t) - {atom x})"
-apply(simp add: supp_def)
-sorry
+lemma lam_supp1:
+ shows "(supp (atom x, t)) supports (Lam x t) "
+apply(simp add: supports_def)
+apply(fold fresh_def)
+apply(simp add: fresh_Pair swap_fresh_fresh)
+apply(clarify)
+apply(subst swap_at_base_simps(3))
+apply(simp_all add: fresh_atom)
+done
+lemma lam_fsupp1:
+ assumes a: "finite (supp t)"
+ shows "finite (supp (Lam x t))"
+apply(rule supports_finite)
+apply(rule lam_supp1)
+apply(simp add: a supp_Pair supp_atom)
+done
instance lam :: fs
apply(default)
apply(induct_tac x rule: lam_induct)
apply(simp add: var_supp)
apply(simp add: app_supp)
-apply(simp add: lam_supp)
+apply(simp add: lam_fsupp1)
done
+lemma lam_fresh1:
+ assumes f: "finite (supp t)"
+ and a1: "b \<sharp> t"
+ and a2: "atom a \<noteq> b"
+ shows "b \<sharp> Lam a t"
+ proof -
+ have "\<exists>c. c \<sharp> (b, a ,t, Lam a t)" sorry
+ then obtain c where fr1: "c \<noteq> b"
+ and fr2: "c \<noteq> atom a"
+ and fr3: "c \<sharp> t"
+ and fr4: "c \<sharp> Lam a t"
+ and fr5: "sort_of b = sort_of c"
+ apply(auto simp add: fresh_Pair fresh_atom)
+ sorry
+ have e: "(c \<rightleftharpoons> b) \<bullet> (Lam a t) = Lam a ((c \<rightleftharpoons> b) \<bullet> t)" using a2 fr1 fr2
+ by simp
+ from fr4 have "((c \<rightleftharpoons> b) \<bullet>c) \<sharp> ((c \<rightleftharpoons> b) \<bullet>(Lam a t))"
+ by (simp only: fresh_permute_iff)
+ then have "b \<sharp> (Lam a ((c \<rightleftharpoons> b) \<bullet> t))" using fr1 fr2 fr5 e
+ by simp
+ then show ?thesis using a1 fr3
+ by (simp only: swap_fresh_fresh)
+qed
+
+lemma lam_fresh2:
+ assumes f: "finite (supp t)"
+ shows "(atom a) \<sharp> Lam a t"
+sorry
+
+
+lemma lam_supp:
+ shows "supp (Lam x t) = ((supp t) - {atom x})"
+apply(default)
+apply(simp_all add: supp_conv_fresh)
+apply(auto)
+sorry
+
lemma fresh_lam:
"(atom a \<sharp> Lam b t) \<longleftrightarrow> (a = b) \<or> (a \<noteq> b \<and> atom a \<sharp> t)"
apply(simp add: fresh_def)