--- a/Nominal/Abs.thy Thu Jun 03 15:02:52 2010 +0200
+++ b/Nominal/Abs.thy Mon Jun 07 11:43:01 2010 +0200
@@ -51,6 +51,73 @@
by (case_tac [!] bs, case_tac [!] cs)
(auto simp add: le_fun_def le_bool_def alphas)
+(* equivariance *)
+lemma alpha_gen_eqvt[eqvt]:
+ shows "(bs, x) \<approx>gen R f q (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>gen (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
+ and "(bs, x) \<approx>res R f q (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>res (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
+ and "(ds, x) \<approx>lst R f q (es, y) \<Longrightarrow> (p \<bullet> ds, p \<bullet> x) \<approx>lst (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> es, p \<bullet> y)"
+ unfolding alphas
+ unfolding permute_eqvt[symmetric]
+ unfolding set_eqvt[symmetric]
+ unfolding permute_fun_app_eq[symmetric]
+ unfolding Diff_eqvt[symmetric]
+ by (auto simp add: permute_bool_def fresh_star_permute_iff)
+
+(* equivalence *)
+lemma alpha_gen_refl:
+ assumes a: "R x x"
+ shows "(bs, x) \<approx>gen R f 0 (bs, x)"
+ and "(bs, x) \<approx>res R f 0 (bs, x)"
+ and "(cs, x) \<approx>lst R f 0 (cs, x)"
+ using a
+ unfolding alphas
+ unfolding fresh_star_def
+ by (simp_all add: fresh_zero_perm)
+
+lemma alpha_gen_sym:
+ assumes a: "R (p \<bullet> x) y \<Longrightarrow> R (- p \<bullet> y) x"
+ shows "(bs, x) \<approx>gen R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>gen R f (- p) (bs, x)"
+ and "(bs, x) \<approx>res R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>res R f (- p) (bs, x)"
+ and "(ds, x) \<approx>lst R f p (es, y) \<Longrightarrow> (es, y) \<approx>lst R f (- p) (ds, x)"
+ unfolding alphas fresh_star_def
+ using a
+ by (auto simp add: fresh_minus_perm)
+
+lemma alpha_gen_sym_eqvt:
+ assumes a: "R (p \<bullet> x) y \<Longrightarrow> R y (p \<bullet> x)"
+ and b: "p \<bullet> R = R"
+ shows "(bs, x) \<approx>gen R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>gen R f (- p) (bs, x)"
+ and "(bs, x) \<approx>res R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>res R f (- p) (bs, x)"
+ and "(ds, x) \<approx>lst R f p (es, y) \<Longrightarrow> (es, y) \<approx>lst R f (- p) (ds, x)"
+proof -
+ { assume "R (p \<bullet> x) y"
+ then have "R y (p \<bullet> x)" using a by simp
+ then have "R (- p \<bullet> y) x"
+ apply(rule_tac p="p" in permute_boolE)
+ apply(perm_simp add: permute_minus_cancel b)
+ apply(assumption)
+ done
+ }
+ then show "(bs, x) \<approx>gen R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>gen R f (- p) (bs, x)"
+ and "(bs, x) \<approx>res R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>res R f (- p) (bs, x)"
+ and "(ds, x) \<approx>lst R f p (es, y) \<Longrightarrow> (es, y) \<approx>lst R f (- p) (ds, x)"
+ unfolding alphas fresh_star_def
+ by (auto simp add: fresh_minus_perm)
+qed
+
+lemma alpha_gen_trans:
+ assumes a: "\<lbrakk>R (p \<bullet> x) y; R (q \<bullet> y) z\<rbrakk> \<Longrightarrow> R ((q + p) \<bullet> x) z"
+ shows "\<lbrakk>(bs, x) \<approx>gen R f p (cs, y); (cs, y) \<approx>gen R f q (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>gen R f (q + p) (ds, z)"
+ and "\<lbrakk>(bs, x) \<approx>res R f p (cs, y); (cs, y) \<approx>res R f q (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>res R f (q + p) (ds, z)"
+ and "\<lbrakk>(es, x) \<approx>lst R f p (gs, y); (gs, y) \<approx>lst R f q (hs, z)\<rbrakk> \<Longrightarrow> (es, x) \<approx>lst R f (q + p) (hs, z)"
+ using a
+ unfolding alphas fresh_star_def
+ by (simp_all add: fresh_plus_perm)
+
+
+
+section {* General Abstractions *}
+
fun
alpha_abs
where
@@ -731,45 +798,7 @@
lemmas alphas_compose_trans2 = alpha_gen_compose_trans2 alpha_res_compose_trans2 alpha_lst_compose_trans2
-lemma alpha_gen_refl:
- assumes a: "R x x"
- shows "(bs, x) \<approx>gen R f 0 (bs, x)"
- and "(bs, x) \<approx>res R f 0 (bs, x)"
- and "(cs, x) \<approx>lst R f 0 (cs, x)"
- using a
- unfolding alphas
- unfolding fresh_star_def
- by (simp_all add: fresh_zero_perm)
-lemma alpha_gen_sym:
- assumes a: "R (p \<bullet> x) y \<Longrightarrow> R (- p \<bullet> y) x"
- shows "(bs, x) \<approx>gen R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>gen R f (- p) (bs, x)"
- and "(bs, x) \<approx>res R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>res R f (- p) (bs, x)"
- and "(ds, x) \<approx>lst R f p (es, y) \<Longrightarrow> (es, y) \<approx>lst R f (- p) (ds, x)"
- unfolding alphas fresh_star_def
- using a
- by (auto simp add: fresh_minus_perm)
-
-lemma alpha_gen_trans:
- assumes a: "\<lbrakk>R (p \<bullet> x) y; R (q \<bullet> y) z\<rbrakk> \<Longrightarrow> R ((q + p) \<bullet> x) z"
- shows "\<lbrakk>(bs, x) \<approx>gen R f p (cs, y); (cs, y) \<approx>gen R f q (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>gen R f (q + p) (ds, z)"
- and "\<lbrakk>(bs, x) \<approx>res R f p (cs, y); (cs, y) \<approx>res R f q (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>res R f (q + p) (ds, z)"
- and "\<lbrakk>(es, x) \<approx>lst R f p (gs, y); (gs, y) \<approx>lst R f q (hs, z)\<rbrakk> \<Longrightarrow> (es, x) \<approx>lst R f (q + p) (hs, z)"
- using a
- unfolding alphas fresh_star_def
- by (simp_all add: fresh_plus_perm)
-
-
-lemma alpha_gen_eqvt[eqvt]:
- shows "(bs, x) \<approx>gen R f q (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>gen (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
- and "(bs, x) \<approx>res R f q (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>res (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
- and "(ds, x) \<approx>lst R f q (es, y) \<Longrightarrow> (p \<bullet> ds, p \<bullet> x) \<approx>lst (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> es, p \<bullet> y)"
- unfolding alphas
- unfolding permute_eqvt[symmetric]
- unfolding set_eqvt[symmetric]
- unfolding permute_fun_app_eq[symmetric]
- unfolding Diff_eqvt[symmetric]
- by (auto simp add: permute_bool_def fresh_star_permute_iff)
lemma alpha_gen_simpler:
assumes fv_rsp: "\<And>x y. R y x \<Longrightarrow> f x = f y"