--- a/Nominal/Ex/SingleLet.thy Sun Sep 05 07:00:19 2010 +0800
+++ b/Nominal/Ex/SingleLet.thy Fri Sep 10 09:17:40 2010 +0800
@@ -6,14 +6,14 @@
declare [[STEPS = 100]]
-nominal_datatype single_let: trm =
+nominal_datatype single_let: trm =
Var "name"
| App "trm" "trm"
| Lam x::"name" t::"trm" bind x in t
| Let a::"assg" t::"trm" bind "bn a" in t
| Foo x::"name" y::"name" t::"trm" t1::"trm" t2::"trm" bind (set) x in y t t1 t2
| Bar x::"name" y::"name" t::"trm" bind y x in t x y
-| Baz x::"name" t1::"trm" t2::"trm" bind x in t1, bind x in t2
+| Baz x::"name" t1::"trm" t2::"trm" bind (set) x in t1, bind (set) x in t2
and assg =
As "name" x::"name" t::"trm" bind x in t
binder
@@ -34,6 +34,7 @@
thm single_let.size_eqvt
thm single_let.supports
thm single_let.fsupp
+thm single_let.supp
lemma test2:
assumes "fv_trm t = supp t"
@@ -44,26 +45,25 @@
apply(rule assms)
done
-
lemma supp_fv:
- "fv_trm t = supp t" "fv_assg as = supp as" "fv_bn as = supp_rel alpha_bn as"
-apply(induct t and as rule: single_let.inducts)
+ "fv_trm x = supp x"
+ "fv_assg xa = supp xa"
+ "fv_bn xa = supp_rel alpha_bn xa"
+apply(induct rule: single_let.inducts)
-- " 0A "
apply(simp only: single_let.fv_defs supp_Pair[symmetric])
-apply(simp only: supp_abs(3)[symmetric])?
apply(simp (no_asm) only: supp_def)
apply(perm_simp add: single_let.perm_simps single_let.fv_bn_eqvt)
apply(simp (no_asm) only: single_let.eq_iff Abs_eq_iff)
-- " 0B"
apply(simp only: single_let.fv_defs supp_Pair[symmetric])
-apply(simp only: supp_abs(3)[symmetric])?
apply(simp (no_asm) only: supp_def)
apply(perm_simp add: single_let.perm_simps single_let.fv_bn_eqvt)
apply(simp (no_asm) only: single_let.eq_iff Abs_eq_iff)
apply(simp only: alphas prod_alpha_def prod_fv.simps prod_rel.simps permute_prod_def prod.recs prod.cases prod.inject)
--" 1 "
apply(simp only: single_let.fv_defs supp_Pair[symmetric])
-apply(simp only: supp_abs(3)[symmetric])
+apply(tactic {* EqSubst.eqsubst_tac @{context} [1] @{thms supp_abs(3)[symmetric]} 1 *})
apply(simp (no_asm) only: supp_def)
apply(perm_simp add: single_let.perm_simps single_let.fv_bn_eqvt)
apply(simp (no_asm) only: single_let.eq_iff Abs_eq_iff)
@@ -72,7 +72,7 @@
apply(simp only:)
-- " 2 "
apply(simp only: single_let.fv_defs supp_Pair[symmetric])
-apply(simp only: supp_abs(3)[symmetric])
+apply(subst supp_abs(3)[symmetric])
apply(simp (no_asm) only: supp_def supp_rel_def)
apply(perm_simp add: single_let.perm_simps single_let.fv_bn_eqvt)
apply(simp (no_asm) only: single_let.eq_iff Abs_eq_iff)
@@ -82,7 +82,7 @@
apply(simp only:)
-- " 3 "
apply(simp only: single_let.fv_defs supp_Pair[symmetric])
-apply(simp only: supp_abs(1)[symmetric])
+apply(subst supp_abs(1)[symmetric])
apply(simp (no_asm) only: supp_def supp_rel_def)
apply(perm_simp add: single_let.perm_simps single_let.fv_bn_eqvt)
apply(simp (no_asm) only: single_let.eq_iff Abs_eq_iff)
@@ -91,7 +91,7 @@
apply(simp only: supp_Pair Un_assoc conj_assoc)
-- " Bar "
apply(simp only: single_let.fv_defs supp_Pair[symmetric])
-apply(simp only: supp_abs(3)[symmetric])
+apply(subst supp_abs(3)[symmetric])
apply(simp (no_asm) only: supp_def)
apply(perm_simp add: single_let.perm_simps single_let.fv_bn_eqvt)
apply(simp (no_asm) only: single_let.eq_iff Abs_eq_iff)
@@ -100,7 +100,8 @@
apply(simp only: supp_Pair Un_assoc conj_assoc)
-- " Baz "
apply(simp only: single_let.fv_defs supp_Pair[symmetric])
-apply(simp only: supp_abs(3)[symmetric])
+apply(subst supp_abs(1)[symmetric])
+apply(subst supp_abs(1)[symmetric])
apply(simp (no_asm) only: supp_def)
apply(perm_simp add: single_let.perm_simps single_let.fv_bn_eqvt)
apply(simp (no_asm) only: single_let.eq_iff Abs_eq_iff)
@@ -110,7 +111,7 @@
apply(simp only: supp_Pair Un_assoc conj_assoc)
-- "last"
apply(simp only: single_let.fv_defs supp_Pair[symmetric])
-apply(simp only: supp_abs(3)[symmetric])
+apply(tactic {* EqSubst.eqsubst_tac @{context} [1] @{thms supp_abs(3)[symmetric]} 1 *})
apply(simp (no_asm) only: supp_def supp_rel_def)
apply(perm_simp add: single_let.perm_simps single_let.fv_bn_eqvt)
apply(simp (no_asm) only: single_let.eq_iff Abs_eq_iff)