--- a/Nominal-General/Nominal2_Eqvt.thy Sun Nov 14 10:02:30 2010 +0000
+++ b/Nominal-General/Nominal2_Eqvt.thy Sun Nov 14 11:05:22 2010 +0000
@@ -33,10 +33,13 @@
swap_eqvt flip_eqvt
(* datatypes *)
- Pair_eqvt permute_list.simps
+ Pair_eqvt permute_list.simps
(* sets *)
- mem_eqvt insert_eqvt
+ mem_eqvt empty_eqvt insert_eqvt set_eqvt
+
+ (* fsets *)
+ permute_fset fset_eqvt
text {* helper lemmas for the perm_simp *}
@@ -79,7 +82,7 @@
apply(simp)
done
-section {* Logical Operators *}
+subsection {* Equivariance of Logical Operators *}
lemma eq_eqvt[eqvt]:
shows "p \<bullet> (x = y) \<longleftrightarrow> (p \<bullet> x) = (p \<bullet> y)"
@@ -128,7 +131,7 @@
apply(rule theI'[OF unique])
done
-section {* Set Operations *}
+subsection {* Equivariance Set Operations *}
lemma not_mem_eqvt:
shows "p \<bullet> (x \<notin> A) \<longleftrightarrow> (p \<bullet> x) \<notin> (p \<bullet> A)"
@@ -152,11 +155,6 @@
unfolding Ball_def
by (perm_simp) (rule refl)
-lemma empty_eqvt[eqvt]:
- shows "p \<bullet> {} = {}"
- unfolding empty_def
- by (perm_simp) (rule refl)
-
lemma supp_set_empty:
shows "supp {} = {}"
unfolding supp_def
@@ -223,7 +221,7 @@
shows "supp (set xs) = supp xs"
apply(induct xs)
apply(simp add: supp_set_empty supp_Nil)
-apply(simp add: supp_Cons supp_of_fin_insert)
+apply(simp add: supp_Cons supp_of_finite_insert)
done
@@ -253,21 +251,19 @@
shows "a \<sharp> rev xs \<longleftrightarrow> a \<sharp> xs"
by (induct xs) (auto simp add: fresh_append fresh_Cons fresh_Nil)
-lemma set_eqvt[eqvt]:
- shows "p \<bullet> (set xs) = set (p \<bullet> xs)"
- by (induct xs) (simp_all add: empty_eqvt insert_eqvt)
-
-(* needs finite support premise
-lemma supp_set:
- fixes x :: "'a::pt"
- shows "supp (set xs) = supp xs"
-*)
-
lemma map_eqvt[eqvt]:
shows "p \<bullet> (map f xs) = map (p \<bullet> f) (p \<bullet> xs)"
by (induct xs) (simp_all, simp only: permute_fun_app_eq)
-section {* Product Operations *}
+
+subsection {* Equivariance for fsets *}
+
+lemma map_fset_eqvt[eqvt]:
+ shows "p \<bullet> (map_fset f S) = map_fset (p \<bullet> f) (p \<bullet> S)"
+ by (lifting map_eqvt)
+
+
+subsection {* Product Operations *}
lemma fst_eqvt[eqvt]:
"p \<bullet> (fst x) = fst (p \<bullet> x)"
@@ -379,7 +375,7 @@
ML {* Nominal_ThmDecls.is_eqvt @{context} @{term "supp"} *}
-section {* Automatic equivariance procedure for inductive definitions *}
+section {* automatic equivariance procedure for inductive definitions *}
use "nominal_eqvt.ML"