--- a/Nominal-General/Nominal2_Eqvt.thy Fri Sep 03 22:35:35 2010 +0800
+++ b/Nominal-General/Nominal2_Eqvt.thy Sat Sep 04 05:43:03 2010 +0800
@@ -20,6 +20,20 @@
use "nominal_thmdecls.ML"
setup "Nominal_ThmDecls.setup"
+
+section {* eqvt lemmas *}
+
+lemmas [eqvt] =
+ conj_eqvt Not_eqvt ex_eqvt imp_eqvt
+ imp_eqvt[folded induct_implies_def]
+
+ (* nominal *)
+ supp_eqvt fresh_eqvt add_perm_eqvt atom_eqvt swap_eqvt uminus_eqvt
+
+ (* datatypes *)
+ Pair_eqvt permute_list.simps
+
+
text {* helper lemmas for the perm_simp *}
definition
@@ -79,14 +93,6 @@
shows "p \<bullet> False = False"
unfolding permute_bool_def ..
-lemma imp_eqvt[eqvt]:
- shows "p \<bullet> (A \<longrightarrow> B) = ((p \<bullet> A) \<longrightarrow> (p \<bullet> B))"
- by (simp add: permute_bool_def)
-
-lemma conj_eqvt[eqvt]:
- shows "p \<bullet> (A \<and> B) = ((p \<bullet> A) \<and> (p \<bullet> B))"
- by (simp add: permute_bool_def)
-
lemma disj_eqvt[eqvt]:
shows "p \<bullet> (A \<or> B) = ((p \<bullet> A) \<or> (p \<bullet> B))"
by (simp add: permute_bool_def)
@@ -104,11 +110,6 @@
shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. p \<bullet> P (- p \<bullet> x))"
by (perm_simp add: permute_minus_cancel) (rule refl)
-lemma ex_eqvt[eqvt]:
- shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. (p \<bullet> P) x)"
- unfolding permute_fun_def permute_bool_def
- by (auto, rule_tac x="p \<bullet> x" in exI, simp)
-
lemma ex_eqvt2:
shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. p \<bullet> P (- p \<bullet> x))"
by (perm_simp add: permute_minus_cancel) (rule refl)
@@ -211,6 +212,12 @@
shows "p \<bullet> (insert x A) = insert (p \<bullet> x) (p \<bullet> A)"
unfolding permute_set_eq_image image_insert ..
+lemma image_eqvt:
+ shows "p \<bullet> (f ` A) = (p \<bullet> f) ` (p \<bullet> A)"
+ unfolding permute_set_eq_image
+ unfolding permute_fun_def [where f=f]
+ by (simp add: image_image)
+
lemma vimage_eqvt[eqvt]:
shows "p \<bullet> (f -` A) = (p \<bullet> f) -` (p \<bullet> A)"
unfolding vimage_def
@@ -230,6 +237,15 @@
shows "p \<bullet> finite A = finite (p \<bullet> A)"
unfolding finite_permute_iff permute_bool_def ..
+lemma supp_set:
+ fixes xs :: "('a::fs) list"
+ shows "supp (set xs) = supp xs"
+apply(induct xs)
+apply(simp add: supp_set_empty supp_Nil)
+apply(simp add: supp_Cons supp_of_fin_insert)
+done
+
+
section {* List Operations *}
lemma append_eqvt[eqvt]:
@@ -295,20 +311,6 @@
shows "a \<sharp> ()"
by (simp add: fresh_def supp_unit)
-section {* additional eqvt lemmas *}
-
-lemmas [eqvt] =
- imp_eqvt [folded induct_implies_def]
-
- (* nominal *)
- supp_eqvt fresh_eqvt add_perm_eqvt atom_eqvt swap_eqvt uminus_eqvt
-
- (* datatypes *)
- Pair_eqvt permute_list.simps
-
- (* sets *)
- image_eqvt
-
section {* Test cases *}