--- a/Quot/Examples/AbsRepTest.thy Fri Dec 25 00:58:06 2009 +0100
+++ b/Quot/Examples/AbsRepTest.thy Sat Dec 26 07:15:30 2009 +0100
@@ -2,21 +2,87 @@
imports "../QuotMain" "../QuotList" "../QuotOption" "../QuotSum" "../QuotProd" List
begin
+ML {* open Quotient_Term *}
+
print_maps
+
quotient_type
'a fset = "'a list" / "\<lambda>xs ys. \<forall>e. e \<in> set xs \<longleftrightarrow> e \<in> set ys"
apply(rule equivpI)
unfolding reflp_def symp_def transp_def
- apply(auto)
- done
+ by auto
quotient_type
'a foo = "('a * 'a) list" / "\<lambda>(xs::('a * 'a) list) ys. \<forall>e. e \<in> set xs \<longleftrightarrow> e \<in> set ys"
apply(rule equivpI)
unfolding reflp_def symp_def transp_def
- apply(auto)
- done
+ by auto
+
+quotient_type
+ 'a bar = "('a * int) list" / "\<lambda>(xs::('a * int) list) ys. \<forall>e. e \<in> set xs \<longleftrightarrow> e \<in> set ys"
+ apply(rule equivpI)
+ unfolding reflp_def symp_def transp_def
+ by auto
+
+fun
+ intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool"
+where
+ "intrel (x, y) (u, v) = (x + v = u + y)"
+
+quotient_type int = "nat \<times> nat" / intrel
+ by (auto simp add: equivp_def expand_fun_eq)
+
+print_quotients
+
+ML {*
+absrep_fun_chk absF @{context}
+ (@{typ "('a * 'a) list"},
+ @{typ "'a foo"})
+|> Syntax.string_of_term @{context}
+|> writeln
+*}
+
+(* PROBLEM
+ML {*
+absrep_fun_chk absF @{context}
+ (@{typ "(('a list) * int) list"},
+ @{typ "('a fset) bar"})
+|> Syntax.string_of_term @{context}
+|> writeln
+*}*)
+
+ML {*
+absrep_fun_chk absF @{context}
+ (@{typ "('a list) list"},
+ @{typ "('a fset) fset"})
+|> Syntax.string_of_term @{context}
+|> writeln
+*}
+
+ML {*
+absrep_fun_chk absF @{context}
+ (@{typ "nat \<times> nat"},
+ @{typ "int"})
+|> Syntax.string_of_term @{context}
+|> writeln
+*}
+
+
+term abs_foo
+term rep_foo
+term "abs_foo o map (prod_fun id id)"
+term "map (prod_fun id id) o rep_foo"
+
+ML {*
+absrep_fun_chk absF @{context}
+ (@{typ "('a * 'a) list"},
+ @{typ "'a foo"})
+|> Syntax.string_of_term @{context}
+|> writeln
+*}
+
+typ "('a fset) foo"
print_quotients
@@ -24,12 +90,6 @@
Quotient_Info.quotient_rules_get @{context}
*}
-quotient_type int = "nat \<times> nat" / "\<lambda>(x, y) (u, v). x + v = u + (y::nat)"
- apply(rule equivpI)
- unfolding reflp_def symp_def transp_def
- apply(auto)
- done
-
print_quotients
ML {*