--- a/Nominal/Ex/ExLet.thy Tue May 04 07:22:33 2010 +0100
+++ b/Nominal/Ex/ExLet.thy Tue May 04 11:08:30 2010 +0200
@@ -1,17 +1,15 @@
theory ExLet
-imports "../Parser" "../../Attic/Prove"
+imports "../NewParser" "../../Attic/Prove"
begin
text {* example 3 or example 5 from Terms.thy *}
atom_decl name
-ML {* val _ = recursive := false *}
-ML {* val _ = alpha_type := AlphaLst *}
nominal_datatype trm =
Vr "name"
| Ap "trm" "trm"
-| Lm x::"name" t::"trm" bind x in t
+| Lm x::"name" t::"trm" bind_set x in t
| Lt a::"lts" t::"trm" bind "bn a" in t
(*| L a::"lts" t1::"trm" t2::"trm" bind "bn a" in t1, bind "bn a" in t2*)
and lts =
@@ -52,11 +50,10 @@
apply simp
apply clarify
apply (erule alpha_trm_raw_alpha_lts_raw_alpha_bn_raw.inducts)
+ apply (rule TrueI)+
apply simp_all
- apply (rule alpha_trm_raw_alpha_lts_raw_alpha_bn_raw.intros)
- apply simp
- apply (rule alpha_trm_raw_alpha_lts_raw_alpha_bn_raw.intros)
- apply simp
+ apply (rule_tac [!] alpha_trm_raw_alpha_lts_raw_alpha_bn_raw.intros)
+ apply simp_all
done
lemmas permute_bn = permute_bn_raw.simps[quot_lifted]
@@ -64,8 +61,8 @@
lemma permute_bn_zero:
"permute_bn 0 a = a"
apply(induct a rule: trm_lts.inducts(2))
- apply(rule TrueI)
- apply(simp_all add:permute_bn eqvts)
+ apply(rule TrueI)+
+ apply(simp_all add:permute_bn)
done
lemma permute_bn_add:
@@ -74,37 +71,29 @@
lemma permute_bn_alpha_bn: "alpha_bn lts (permute_bn q lts)"
apply(induct lts rule: trm_lts.inducts(2))
- apply(rule TrueI)
+ apply(rule TrueI)+
apply(simp_all add:permute_bn eqvts trm_lts.eq_iff)
done
lemma perm_bn:
"p \<bullet> bn l = bn(permute_bn p l)"
apply(induct l rule: trm_lts.inducts(2))
- apply(rule TrueI)
+ apply(rule TrueI)+
apply(simp_all add:permute_bn eqvts)
done
lemma fv_perm_bn:
"fv_bn l = fv_bn (permute_bn p l)"
apply(induct l rule: trm_lts.inducts(2))
- apply(rule TrueI)
+ apply(rule TrueI)+
apply(simp_all add:permute_bn eqvts)
done
-lemma fv_fv_bn:
- "fv_bn l - set (bn l) = fv_lts l - set (bn l)"
- apply(induct l rule: trm_lts.inducts(2))
- apply(rule TrueI)
- apply(simp_all add:permute_bn eqvts)
- by blast
-
lemma Lt_subst:
"supp (Abs_lst (bn lts) trm) \<sharp>* q \<Longrightarrow> (Lt lts trm) = Lt (permute_bn q lts) (q \<bullet> trm)"
- apply (simp only: trm_lts.eq_iff)
+ apply (simp add: trm_lts.eq_iff permute_bn_alpha_bn)
apply (rule_tac x="q" in exI)
apply (simp add: alphas)
- apply (simp add: permute_bn_alpha_bn)
apply (simp add: perm_bn[symmetric])
apply (simp add: eqvts[symmetric])
apply (simp add: supp_abs)
@@ -204,8 +193,7 @@
"(Lt (Lcons x (Vr y) Lnil) (Vr x)) = (Lt (Lcons y (Vr y) Lnil) (Vr y))"
apply (simp add: trm_lts.eq_iff)
apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
- apply (simp_all add: alphas)
- apply (simp add: fresh_star_def eqvts)
+ apply (simp_all add: alphas eqvts supp_at_base fresh_star_def)
done
lemma lets_ok3: