--- a/Paper/Paper.thy Thu Apr 01 15:41:48 2010 +0200
+++ b/Paper/Paper.thy Thu Apr 01 16:08:54 2010 +0200
@@ -1407,15 +1407,20 @@
then we generate just @{text "x\<^isub>i = y\<^isub>i"}.
- The definition of the alpha-equivalence relations @{text "\<approx>bn"} for binding functions
- are similar. We again have conclusions of the form \mbox{@{text "C x\<^isub>1 \<dots> x\<^isub>n \<approx>bn C y\<^isub>1 \<dots> y\<^isub>n"}}. We
- need to generate premises for each pair @{text "(x\<^isub>i, y\<^isub>i)"} depending on whether @{text "x\<^isub>i"}
- occurs in @{text "rhs"} of the clause @{text "bn (C x\<^isub>1 \<dots> x\<^isub>n) = rhs"}:
+ The definitions of the alpha-equivalence relations @{text "\<approx>bn"} for binding functions
+ are similar. We again have conclusions of the form \mbox{@{text "C x\<^isub>1 \<dots> x\<^isub>n \<approx>bn C y\<^isub>1 \<dots> y\<^isub>n"}}
+ and need to generate appropriate premises. We generate first premises according to the first three
+ rules given above. Only the ``left-over'' pairs @{text "(x\<^isub>i, y\<^isub>i)"} need to be treated
+ differently. They depend on whether @{text "x\<^isub>i"} occurs in @{text "rhs"} of the
+ clause @{text "bn (C x\<^isub>1 \<dots> x\<^isub>n) = rhs"}:
\begin{center}
\begin{tabular}{c@ {\hspace{2mm}}p{7cm}}
$\bullet$ & @{text "x\<^isub>i \<approx>ty y\<^isub>i"} provided @{text "x\<^isub>i"} does not occur in @{text rhs}
- and the type of @{text "x\<^isub>i"} is @{text "ty"}\\
+ and the type of @{text "x\<^isub>i"} is @{text ty} and @{text "x\<^isub>i"} is a recursive argument
+ in the term-constructor\\
+ $\bullet$ & @{text "x\<^isub>i = y\<^isub>i"} provided @{text "x\<^isub>i"} does not occur in @{text rhs}
+ and @{text "x\<^isub>i"} is not a recursive argument in the term-constructor\\
$\bullet$ & @{text "x\<^isub>i \<approx>bn y\<^isub>i"} provided @{text "x\<^isub>i"} occurs in @{text rhs}
with the recursive call @{text "bn x\<^isub>i"}\\
$\bullet$ & none provided @{text "x\<^isub>i"} occurs in @{text rhs} but it is not
@@ -1423,7 +1428,7 @@
\end{tabular}
\end{center}
- Again lets take a look at an example for these definitions. For \eqref{letrecs}
+ Again lets take a look at an example for these definitions. For \eqref{letrecs}
we have three relations, namely $\approx_{\textit{trm}}$, $\approx_{\textit{assn}}$ and
$\approx_{\textit{bn}}$, with the clauses as follows: