--- a/Nominal/Rsp.thy Wed Aug 25 22:55:42 2010 +0800
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,224 +0,0 @@
-theory Rsp
-imports Abs Tacs
-begin
-
-ML {*
-fun const_rsp qtys lthy const =
-let
- val nty = Quotient_Term.derive_qtyp lthy qtys (fastype_of const)
- val rel = Quotient_Term.equiv_relation_chk lthy (fastype_of const, nty);
-in
- HOLogic.mk_Trueprop (rel $ const $ const)
-end
-*}
-
-(* Replaces bounds by frees and meta implications by implications *)
-ML {*
-fun prepare_goal trm =
-let
- val vars = strip_all_vars trm
- val fs = rev (map Free vars)
- val (fixes, no_alls) = ((map fst vars), subst_bounds (fs, (strip_all_body trm)))
- val prems = map HOLogic.dest_Trueprop (Logic.strip_imp_prems no_alls)
- val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl no_alls)
-in
- (fixes, fold (curry HOLogic.mk_imp) prems concl)
-end
-*}
-
-ML {*
-fun get_rsp_goal thy trm =
-let
- val goalstate = Goal.init (cterm_of thy trm);
- val tac = REPEAT o rtac @{thm fun_relI};
-in
- case (SINGLE (tac 1) goalstate) of
- NONE => error "rsp_goal failed"
- | SOME th => prepare_goal (term_of (cprem_of th 1))
-end
-*}
-
-ML {*
-fun prove_const_rsp qtys bind consts tac ctxt =
-let
- val rsp_goals = map (const_rsp qtys ctxt) consts
- val thy = ProofContext.theory_of ctxt
- val (fixed, user_goals) = split_list (map (get_rsp_goal thy) rsp_goals)
- val fixed' = distinct (op =) (flat fixed)
- val user_goal = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj user_goals)
- val user_thm = Goal.prove ctxt fixed' [] user_goal tac
- val user_thms = map repeat_mp (HOLogic.conj_elims user_thm)
- fun tac _ = (REPEAT o rtac @{thm fun_relI} THEN' resolve_tac user_thms THEN_ALL_NEW atac) 1
- val rsp_thms = map (fn gl => Goal.prove ctxt [] [] gl tac) rsp_goals
-in
- ctxt
-|> snd o Local_Theory.note
- ((Binding.empty, [Attrib.internal (fn _ => Quotient_Info.rsp_rules_add)]), rsp_thms)
-|> Local_Theory.note ((bind, []), user_thms)
-end
-*}
-
-ML {*
-fun fvbv_rsp_tac induct fvbv_simps ctxt =
- rtac induct THEN_ALL_NEW
- (TRY o rtac @{thm TrueI}) THEN_ALL_NEW
- asm_full_simp_tac (HOL_ss addsimps (@{thms prod_fv.simps prod_rel.simps set.simps append.simps alphas} @ fvbv_simps)) THEN_ALL_NEW
- REPEAT o eresolve_tac [conjE, exE] THEN_ALL_NEW
- asm_full_simp_tac (HOL_ss addsimps fvbv_simps) THEN_ALL_NEW
- TRY o blast_tac (claset_of ctxt)
-*}
-
-ML {*
-fun sym_eqvts ctxt = maps (fn x => [sym OF [x]] handle _ => []) (Nominal_ThmDecls.get_eqvts_thms ctxt)
-fun all_eqvts ctxt =
- Nominal_ThmDecls.get_eqvts_thms ctxt @ Nominal_ThmDecls.get_eqvts_raw_thms ctxt
-*}
-
-ML {*
-fun constr_rsp_tac inj rsp =
- REPEAT o rtac impI THEN'
- simp_tac (HOL_ss addsimps inj) THEN' split_conj_tac THEN_ALL_NEW
- (asm_simp_tac HOL_ss THEN_ALL_NEW (
- REPEAT o rtac @{thm exI[of _ "0 :: perm"]} THEN_ALL_NEW
- simp_tac (HOL_basic_ss addsimps @{thms alphas2}) THEN_ALL_NEW
- asm_full_simp_tac (HOL_ss addsimps (rsp @
- @{thms split_conv alphas fresh_star_def fresh_zero_perm permute_zero ball_triv add_0_left prod_rel.simps prod_fv.simps}))
- ))
-*}
-
-ML {*
-fun prove_fv_rsp fv_alphas_lst all_alphas tac ctxt =
-let
- val (fvs_alphas, ls) = split_list fv_alphas_lst;
- val (fv_ts, alpha_ts) = split_list fvs_alphas;
- val tys = map (domain_type o fastype_of) alpha_ts;
- val names = Datatype_Prop.make_tnames tys;
- val names2 = Name.variant_list names names;
- val args = map Free (names ~~ tys);
- val args2 = map Free (names2 ~~ tys);
- fun mk_fv_rsp arg arg2 (fv, alpha) = HOLogic.mk_eq ((fv $ arg), (fv $ arg2));
- fun fv_rsp_arg (((fv, alpha), (arg, arg2)), l) =
- HOLogic.mk_imp (
- (alpha $ arg $ arg2),
- (foldr1 HOLogic.mk_conj
- (HOLogic.mk_eq (fv $ arg, fv $ arg2) ::
- (map (mk_fv_rsp arg arg2) l))));
- val nobn_eqs = map fv_rsp_arg (((fv_ts ~~ alpha_ts) ~~ (args ~~ args2)) ~~ ls);
- fun mk_fv_rsp_bn arg arg2 (fv, alpha) =
- HOLogic.mk_imp (
- (alpha $ arg $ arg2),
- HOLogic.mk_eq ((fv $ arg), (fv $ arg2)));
- fun fv_rsp_arg_bn ((arg, arg2), l) =
- map (mk_fv_rsp_bn arg arg2) l;
- val bn_eqs = flat (map fv_rsp_arg_bn ((args ~~ args2) ~~ ls));
- val (_, add_alphas) = chop (length (nobn_eqs @ bn_eqs)) all_alphas;
- val atys = map (domain_type o fastype_of) add_alphas;
- val anames = Name.variant_list (names @ names2) (Datatype_Prop.make_tnames atys);
- val aargs = map Free (anames ~~ atys);
- val aeqs = map2 (fn alpha => fn arg => HOLogic.mk_imp (alpha $ arg $ arg, @{term True}))
- add_alphas aargs;
- val eq = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj (nobn_eqs @ bn_eqs @ aeqs));
- val th = Goal.prove ctxt (names @ names2) [] eq tac;
- val ths = HOLogic.conj_elims th;
- val (ths_nobn, ths_bn) = chop (length ls) ths;
- fun project (th, l) =
- Project_Rule.projects ctxt (1 upto (length l + 1)) (hd (Project_Rule.projections ctxt th))
- val ths_nobn_pr = map project (ths_nobn ~~ ls);
-in
- (flat ths_nobn_pr @ ths_bn)
-end
-*}
-
-(** alpha_bn_rsp **)
-
-lemma equivp_rspl:
- "equivp r \<Longrightarrow> r a b \<Longrightarrow> r a c = r b c"
- unfolding equivp_reflp_symp_transp symp_def transp_def
- by blast
-
-lemma equivp_rspr:
- "equivp r \<Longrightarrow> r a b \<Longrightarrow> r c a = r c b"
- unfolding equivp_reflp_symp_transp symp_def transp_def
- by blast
-
-ML {*
-fun alpha_bn_rsp_tac simps res exhausts a ctxt =
- rtac allI THEN_ALL_NEW
- case_rules_tac ctxt a exhausts THEN_ALL_NEW
- asm_full_simp_tac (HOL_ss addsimps simps addsimps @{thms alphas}) THEN_ALL_NEW
- TRY o REPEAT_ALL_NEW (rtac @{thm arg_cong2[of _ _ _ _ "op \<and>"]}) THEN_ALL_NEW
- TRY o eresolve_tac res THEN_ALL_NEW
- asm_full_simp_tac (HOL_ss addsimps simps)
-*}
-
-
-ML {*
-fun build_alpha_bn_rsp_gl a alphas alpha_bn ctxt =
-let
- val ty = domain_type (fastype_of alpha_bn);
- val (l, r) = the (AList.lookup (op=) alphas ty);
-in
- ([HOLogic.mk_all (a, ty, HOLogic.mk_eq (alpha_bn $ l $ Bound 0, alpha_bn $ r $ Bound 0)),
- HOLogic.mk_all (a, ty, HOLogic.mk_eq (alpha_bn $ Bound 0 $ l, alpha_bn $ Bound 0 $ r))], ctxt)
-end
-*}
-
-ML {*
-fun prove_alpha_bn_rsp alphas ind simps equivps exhausts alpha_bns ctxt =
-let
- val ([a], ctxt') = Variable.variant_fixes ["a"] ctxt;
- val resl = map (fn x => @{thm equivp_rspl} OF [x]) equivps;
- val resr = map (fn x => @{thm equivp_rspr} OF [x]) equivps;
- val ths_loc = prove_by_rel_induct alphas (build_alpha_bn_rsp_gl a) ind
- (alpha_bn_rsp_tac simps (resl @ resr) exhausts a) alpha_bns ctxt
-in
- Variable.export ctxt' ctxt ths_loc
-end
-*}
-
-ML {*
-fun build_alpha_alpha_bn_gl alphas alpha_bn ctxt =
-let
- val ty = domain_type (fastype_of alpha_bn);
- val (l, r) = the (AList.lookup (op=) alphas ty);
-in
- ([alpha_bn $ l $ r], ctxt)
-end
-*}
-
-lemma exi_same: "\<exists>(pi :: perm). P pi \<Longrightarrow> (\<And>(p :: perm). P p \<Longrightarrow> Q p) \<Longrightarrow> \<exists>pi. Q pi"
- by auto
-
-ML {*
-fun prove_alpha_alphabn alphas ind simps alpha_bns ctxt =
- prove_by_rel_induct alphas build_alpha_alpha_bn_gl ind
- (fn _ => asm_full_simp_tac (HOL_ss addsimps simps addsimps @{thms alphas})
- THEN_ALL_NEW split_conj_tac THEN_ALL_NEW (TRY o etac @{thm exi_same})
- THEN_ALL_NEW asm_full_simp_tac HOL_ss) alpha_bns ctxt
-*}
-
-ML {*
-fun build_rsp_gl alphas fnctn ctxt =
-let
- val typ = domain_type (fastype_of fnctn);
- val (argl, argr) = the (AList.lookup (op=) alphas typ);
-in
- ([HOLogic.mk_eq (fnctn $ argl, fnctn $ argr)], ctxt)
-end
-*}
-
-ML {*
-fun fvbv_rsp_tac' simps ctxt =
- asm_full_simp_tac (HOL_basic_ss addsimps @{thms alphas2}) THEN_ALL_NEW
- asm_full_simp_tac (HOL_ss addsimps (@{thms alphas} @ simps)) THEN_ALL_NEW
- REPEAT o eresolve_tac [conjE, exE] THEN_ALL_NEW
- asm_full_simp_tac (HOL_ss addsimps simps) THEN_ALL_NEW
- TRY o blast_tac (claset_of ctxt)
-*}
-
-ML {*
-fun build_fvbv_rsps alphas ind simps fnctns ctxt =
- prove_by_rel_induct alphas build_rsp_gl ind (fvbv_rsp_tac' simps) fnctns ctxt
-*}
-
-end