--- a/Nominal/Nominal2_Base.thy Tue Jun 14 14:07:07 2011 +0100
+++ b/Nominal/Nominal2_Base.thy Tue Jun 14 19:11:44 2011 +0100
@@ -1697,12 +1697,10 @@
subsection {* helper functions for nominal_functions *}
lemma THE_defaultI2:
- assumes "P a" "\<exists>!x. P x" "\<And>x. P x \<Longrightarrow> Q x"
+ assumes "\<exists>!x. P x" "\<And>x. P x \<Longrightarrow> Q x"
shows "Q (THE_default d P)"
by (iprover intro: assms THE_defaultI')
-thm THE_default1_equality
-
lemma the_default_eqvt:
assumes unique: "\<exists>!x. P x"
shows "(p \<bullet> (THE_default d P)) = (THE_default (p \<bullet> d) (p \<bullet> P))"
@@ -1728,22 +1726,16 @@
apply(rule THE_default1_equality [symmetric])
apply(rule_tac p="-p" in permute_boolE)
apply(perm_simp add: permute_minus_cancel)
- using eqvt
- unfolding eqvt_def
+ using eqvt[simplified eqvt_def]
apply(simp)
apply(rule ex1)
- apply(rule_tac p="-p" in permute_boolE)
- apply(subst permute_fun_app_eq)
- back
- apply(subst the_default_eqvt)
+ apply(rule THE_defaultI2)
apply(rule_tac p="-p" in permute_boolE)
apply(perm_simp add: permute_minus_cancel)
apply(rule ex1)
- apply(perm_simp add: permute_minus_cancel)
- using eqvt
- unfolding eqvt_def
+ apply(perm_simp)
+ using eqvt[simplified eqvt_def]
apply(simp)
- apply(rule THE_defaultI'[OF ex1])
done
lemma fundef_ex1_eqvt_at:
@@ -1756,7 +1748,6 @@
using assms
by (auto intro: fundef_ex1_eqvt)
-(* fixme: polish *)
lemma fundef_ex1_prop:
fixes x::"'a::pt"
assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (G x))"
@@ -1767,7 +1758,6 @@
using ex1
apply(erule_tac ex1E)
apply(rule THE_defaultI2)
- apply(assumption)
apply(blast)
apply(rule P_all)
apply(assumption)