--- a/Nominal-General/Nominal2_Base.thy Wed Apr 21 21:31:07 2010 +0200
+++ b/Nominal-General/Nominal2_Base.thy Wed Apr 21 21:52:30 2010 +0200
@@ -1079,26 +1079,6 @@
unfolding fresh_def
by auto
-(* alternative proof *)
-lemma
- shows "supp (f x) \<subseteq> (supp f) \<union> (supp x)"
-proof (rule subsetCI)
- fix a::"atom"
- assume a: "a \<in> supp (f x)"
- assume b: "a \<notin> supp f \<union> supp x"
- then have "finite {b. (a \<rightleftharpoons> b) \<bullet> f \<noteq> f}" "finite {b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x}"
- unfolding supp_def by auto
- then have "finite ({b. (a \<rightleftharpoons> b) \<bullet> f \<noteq> f} \<union> {b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x})" by simp
- moreover
- have "{b. ((a \<rightleftharpoons> b) \<bullet> f) ((a \<rightleftharpoons> b) \<bullet> x) \<noteq> f x} \<subseteq> ({b. (a \<rightleftharpoons> b) \<bullet> f \<noteq> f} \<union> {b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x})"
- by auto
- ultimately have "finite {b. ((a \<rightleftharpoons> b) \<bullet> f) ((a \<rightleftharpoons> b) \<bullet> x) \<noteq> f x}"
- using finite_subset by auto
- then have "a \<notin> supp (f x)" unfolding supp_def
- by (simp add: permute_fun_app_eq)
- with a show "False" by simp
-qed
-
lemma fresh_fun_eqvt_app:
assumes a: "\<forall>p. p \<bullet> f = f"
shows "a \<sharp> x \<Longrightarrow> a \<sharp> f x"