--- a/Quot/Nominal/Nominal2_Eqvt.thy Wed Feb 03 09:25:21 2010 +0100
+++ b/Quot/Nominal/Nominal2_Eqvt.thy Wed Feb 03 12:06:10 2010 +0100
@@ -6,6 +6,7 @@
theory Nominal2_Eqvt
imports Nominal2_Base
uses ("nominal_thmdecls.ML")
+ ("nominal_permeq.ML")
begin
section {* Logical Operators *}
@@ -43,25 +44,40 @@
by (simp add: permute_bool_def)
lemma all_eqvt:
+ shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. (p \<bullet> P) x)"
+ unfolding permute_fun_def permute_bool_def
+ by (auto, drule_tac x="p \<bullet> x" in spec, simp)
+
+lemma all_eqvt2:
shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. p \<bullet> P (- p \<bullet> x))"
unfolding permute_fun_def permute_bool_def
by (auto, drule_tac x="p \<bullet> x" in spec, simp)
lemma ex_eqvt:
+ shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. (p \<bullet> P) x)"
+ unfolding permute_fun_def permute_bool_def
+ by (auto, rule_tac x="p \<bullet> x" in exI, simp)
+
+lemma ex_eqvt2:
shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. p \<bullet> P (- p \<bullet> x))"
unfolding permute_fun_def permute_bool_def
by (auto, rule_tac x="p \<bullet> x" in exI, simp)
lemma ex1_eqvt:
+ shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. (p \<bullet> P) x)"
+ unfolding Ex1_def
+ by (simp add: ex_eqvt permute_fun_def conj_eqvt all_eqvt imp_eqvt eq_eqvt)
+
+lemma ex1_eqvt2:
shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. p \<bullet> P (- p \<bullet> x))"
- unfolding Ex1_def ex_eqvt conj_eqvt all_eqvt imp_eqvt eq_eqvt
+ unfolding Ex1_def ex_eqvt2 conj_eqvt all_eqvt2 imp_eqvt eq_eqvt
by simp
lemma the_eqvt:
assumes unique: "\<exists>!x. P x"
shows "p \<bullet> (THE x. P x) = (THE x. p \<bullet> P (- p \<bullet> x))"
apply(rule the1_equality [symmetric])
- apply(simp add: ex1_eqvt[symmetric])
+ apply(simp add: ex1_eqvt2[symmetric])
apply(simp add: permute_bool_def unique)
apply(simp add: permute_bool_def)
apply(rule theI'[OF unique])
@@ -78,12 +94,16 @@
unfolding mem_def permute_fun_def by (simp add: Not_eqvt)
lemma Collect_eqvt:
+ shows "p \<bullet> {x. P x} = {x. (p \<bullet> P) x}"
+ unfolding Collect_def permute_fun_def ..
+
+lemma Collect_eqvt2:
shows "p \<bullet> {x. P x} = {x. p \<bullet> (P (-p \<bullet> x))}"
unfolding Collect_def permute_fun_def ..
lemma empty_eqvt:
shows "p \<bullet> {} = {}"
- unfolding empty_def Collect_eqvt False_eqvt ..
+ unfolding empty_def Collect_eqvt2 False_eqvt ..
lemma supp_set_empty:
shows "supp {} = {}"
@@ -95,20 +115,20 @@
lemma UNIV_eqvt:
shows "p \<bullet> UNIV = UNIV"
- unfolding UNIV_def Collect_eqvt True_eqvt ..
+ unfolding UNIV_def Collect_eqvt2 True_eqvt ..
lemma union_eqvt:
shows "p \<bullet> (A \<union> B) = (p \<bullet> A) \<union> (p \<bullet> B)"
- unfolding Un_def Collect_eqvt disj_eqvt mem_eqvt by simp
+ unfolding Un_def Collect_eqvt2 disj_eqvt mem_eqvt by simp
lemma inter_eqvt:
shows "p \<bullet> (A \<inter> B) = (p \<bullet> A) \<inter> (p \<bullet> B)"
- unfolding Int_def Collect_eqvt conj_eqvt mem_eqvt by simp
+ unfolding Int_def Collect_eqvt2 conj_eqvt mem_eqvt by simp
lemma Diff_eqvt:
fixes A B :: "'a::pt set"
shows "p \<bullet> (A - B) = p \<bullet> A - p \<bullet> B"
- unfolding set_diff_eq Collect_eqvt conj_eqvt Not_eqvt mem_eqvt by simp
+ unfolding set_diff_eq Collect_eqvt2 conj_eqvt Not_eqvt mem_eqvt by simp
lemma Compl_eqvt:
fixes A :: "'a::pt set"
@@ -122,7 +142,7 @@
lemma vimage_eqvt:
shows "p \<bullet> (f -` A) = (p \<bullet> f) -` (p \<bullet> A)"
unfolding vimage_def permute_fun_def [where f=f]
- unfolding Collect_eqvt mem_eqvt ..
+ unfolding Collect_eqvt2 mem_eqvt ..
lemma image_eqvt:
shows "p \<bullet> (f ` A) = (p \<bullet> f) ` (p \<bullet> A)"
@@ -139,11 +159,6 @@
shows "p \<bullet> finite A = finite (p \<bullet> A)"
unfolding finite_permute_iff permute_bool_def ..
-lemma supp_eqvt: "p \<bullet> supp S = supp (p \<bullet> S)"
- unfolding supp_def
- by (simp only: Collect_eqvt Not_eqvt finite_eqvt eq_eqvt
- permute_eqvt [of p] swap_eqvt permute_minus_cancel)
-
section {* List Operations *}
@@ -205,22 +220,20 @@
section {* Equivariance automation *}
-text {*
- below is a construction site for a conversion that
- pushes permutations into a term as far as possible
-*}
-
text {* Setup of the theorem attributes @{text eqvt} and @{text eqvt_force} *}
use "nominal_thmdecls.ML"
-setup "NominalThmDecls.setup"
+setup "Nominal_ThmDecls.setup"
lemmas [eqvt] =
(* connectives *)
eq_eqvt if_eqvt imp_eqvt disj_eqvt conj_eqvt Not_eqvt
- True_eqvt False_eqvt
+ True_eqvt False_eqvt ex_eqvt all_eqvt
imp_eqvt [folded induct_implies_def]
+ (* nominal *)
+ permute_eqvt supp_eqvt fresh_eqvt
+
(* datatypes *)
permute_prod.simps
fst_eqvt snd_eqvt
@@ -229,142 +242,56 @@
empty_eqvt UNIV_eqvt union_eqvt inter_eqvt
Diff_eqvt Compl_eqvt insert_eqvt
-(* A simple conversion pushing permutations into a term *)
-
-ML {*
-fun OF1 thm1 thm2 = thm2 RS thm1
-
-fun get_eqvt_thms ctxt =
- map (OF1 @{thm eq_reflection}) (NominalThmDecls.get_eqvt_thms ctxt)
-*}
+declare permute_pure [eqvt]
-ML {*
-fun eqvt_conv ctxt ctrm =
- case (term_of ctrm) of
- (Const (@{const_name "permute"}, _) $ _ $ t) =>
- (if is_Const (head_of t)
- then (More_Conv.rewrs_conv (get_eqvt_thms ctxt)
- then_conv eqvt_conv ctxt) ctrm
- else Conv.comb_conv (eqvt_conv ctxt) ctrm)
- | _ $ _ => Conv.comb_conv (eqvt_conv ctxt) ctrm
- | Abs _ => Conv.abs_conv (fn (_, ctxt) => eqvt_conv ctxt) ctxt ctrm
- | _ => Conv.all_conv ctrm
-*}
+thm eqvt
-ML {*
-fun eqvt_tac ctxt =
- CONVERSION (More_Conv.bottom_conv (fn ctxt => eqvt_conv ctxt) ctxt)
-*}
-
-lemma "p \<bullet> (A \<longrightarrow> B = (C::bool))"
-apply(tactic {* eqvt_tac @{context} 1 *})
-oops
-
-text {*
- Another conversion for pushing permutations into a term.
- It is designed not to apply rules like @{term permute_pure} to
- applications or abstractions, only to constants or free
- variables. Thus permutations are not removed too early, and they
- have a chance to cancel with bound variables.
-*}
+text {* helper lemmas for the eqvt_tac *}
definition
"unpermute p = permute (- p)"
-lemma push_apply:
- fixes f :: "'a::pt \<Rightarrow> 'b::pt" and x :: "'a::pt"
+lemma eqvt_apply:
+ fixes f :: "'a::pt \<Rightarrow> 'b::pt"
+ and x :: "'a::pt"
shows "p \<bullet> (f x) \<equiv> (p \<bullet> f) (p \<bullet> x)"
unfolding permute_fun_def by simp
-lemma push_lambda:
+lemma eqvt_lambda:
fixes f :: "'a::pt \<Rightarrow> 'b::pt"
shows "p \<bullet> (\<lambda>x. f x) \<equiv> (\<lambda>x. p \<bullet> (f (unpermute p x)))"
unfolding permute_fun_def unpermute_def by simp
-lemma push_bound:
+lemma eqvt_bound:
shows "p \<bullet> unpermute p x \<equiv> x"
unfolding unpermute_def by simp
-ML {*
-structure PushData = Named_Thms
-(
- val name = "push"
- val description = "push permutations"
-)
-
-local
+use "nominal_permeq.ML"
-fun push_apply_conv ctxt ct =
- case (term_of ct) of
- (Const (@{const_name "permute"}, _) $ _ $ (_ $ _)) =>
- let
- val (perm, t) = Thm.dest_comb ct
- val (_, p) = Thm.dest_comb perm
- val (f, x) = Thm.dest_comb t
- val a = ctyp_of_term x;
- val b = ctyp_of_term t;
- val ty_insts = map SOME [b, a]
- val term_insts = map SOME [p, f, x]
- in
- Drule.instantiate' ty_insts term_insts @{thm push_apply}
- end
- | _ => Conv.no_conv ct
-
-fun push_lambda_conv ctxt ct =
- case (term_of ct) of
- (Const (@{const_name "permute"}, _) $ _ $ Abs _) =>
- Conv.rewr_conv @{thm push_lambda} ct
- | _ => Conv.no_conv ct
-
-in
-fun push_conv ctxt ct =
- Conv.first_conv
- [ Conv.rewr_conv @{thm push_bound},
- push_apply_conv ctxt
- then_conv Conv.comb_conv (push_conv ctxt),
- push_lambda_conv ctxt
- then_conv Conv.abs_conv (fn (v, ctxt) => push_conv ctxt) ctxt,
- More_Conv.rewrs_conv (PushData.get ctxt),
- Conv.all_conv
- ] ct
-
-fun push_tac ctxt =
- CONVERSION (More_Conv.bottom_conv (fn ctxt => push_conv ctxt) ctxt)
-
-end
-*}
-
-setup PushData.setup
-
-declare permute_pure [THEN eq_reflection, push]
-
-lemma push_eq [THEN eq_reflection, push]:
- "p \<bullet> (op =) = (op =)"
- by (simp add: expand_fun_eq permute_fun_def eq_eqvt)
-
-lemma push_All [THEN eq_reflection, push]:
- "p \<bullet> All = All"
- by (simp add: expand_fun_eq permute_fun_def all_eqvt)
-
-lemma push_Ex [THEN eq_reflection, push]:
- "p \<bullet> Ex = Ex"
- by (simp add: expand_fun_eq permute_fun_def ex_eqvt)
-
-lemma "p \<bullet> (A \<longrightarrow> B = (C::bool))"
-apply (tactic {* push_tac @{context} 1 *})
+lemma "p \<bullet> (A \<longrightarrow> B = C)"
+apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
oops
-lemma "p \<bullet> (\<lambda>x. A \<longrightarrow> B x = (C::bool)) = foo"
-apply (tactic {* push_tac @{context} 1 *})
+lemma "p \<bullet> (\<lambda>(x::'a::pt). A \<longrightarrow> (B::'a \<Rightarrow> bool) x = C) = foo"
+apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
oops
lemma "p \<bullet> (\<lambda>x y. \<exists>z. x = z \<and> x = y \<longrightarrow> z \<noteq> x) = foo"
-apply (tactic {* push_tac @{context} 1 *})
+apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
oops
lemma "p \<bullet> (\<lambda>f x. f (g (f x))) = foo"
-apply (tactic {* push_tac @{context} 1 *})
+apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
+oops
+
+lemma "p \<bullet> (\<lambda>q. q \<bullet> (r \<bullet> x)) = foo"
+apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
oops
+lemma "p \<bullet> (q \<bullet> r \<bullet> x) = foo"
+apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
+oops
+
+
end
\ No newline at end of file