--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Attic/Unused.thy Tue Jan 26 20:12:41 2010 +0100
@@ -0,0 +1,161 @@
+(*notation ( output) "prop" ("#_" [1000] 1000) *)
+notation ( output) "Trueprop" ("#_" [1000] 1000)
+
+lemma regularize_to_injection:
+ shows "(QUOT_TRUE l \<Longrightarrow> y) \<Longrightarrow> (l = r) \<longrightarrow> y"
+ by(auto simp add: QUOT_TRUE_def)
+
+syntax
+ "Bexeq" :: "id \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" ("(3\<exists>!!_\<in>_./ _)" [0, 0, 10] 10)
+translations
+ "\<exists>!!x\<in>A. P" == "Bexeq A (%x. P)"
+
+
+(* Atomize infrastructure *)
+(* FIXME/TODO: is this really needed? *)
+(*
+lemma atomize_eqv:
+ shows "(Trueprop A \<equiv> Trueprop B) \<equiv> (A \<equiv> B)"
+proof
+ assume "A \<equiv> B"
+ then show "Trueprop A \<equiv> Trueprop B" by unfold
+next
+ assume *: "Trueprop A \<equiv> Trueprop B"
+ have "A = B"
+ proof (cases A)
+ case True
+ have "A" by fact
+ then show "A = B" using * by simp
+ next
+ case False
+ have "\<not>A" by fact
+ then show "A = B" using * by auto
+ qed
+ then show "A \<equiv> B" by (rule eq_reflection)
+qed
+*)
+
+
+ML {*
+ fun dest_cbinop t =
+ let
+ val (t2, rhs) = Thm.dest_comb t;
+ val (bop, lhs) = Thm.dest_comb t2;
+ in
+ (bop, (lhs, rhs))
+ end
+*}
+
+ML {*
+ fun dest_ceq t =
+ let
+ val (bop, pair) = dest_cbinop t;
+ val (bop_s, _) = Term.dest_Const (Thm.term_of bop);
+ in
+ if bop_s = "op =" then pair else (raise CTERM ("Not an equality", [t]))
+ end
+*}
+
+ML {*
+ fun split_binop_conv t =
+ let
+ val (lhs, rhs) = dest_ceq t;
+ val (bop, _) = dest_cbinop lhs;
+ val [clT, cr2] = bop |> Thm.ctyp_of_term |> Thm.dest_ctyp;
+ val [cmT, crT] = Thm.dest_ctyp cr2;
+ in
+ Drule.instantiate' [SOME clT, SOME cmT, SOME crT] [NONE, NONE, NONE, NONE, SOME bop] @{thm arg_cong2}
+ end
+*}
+
+
+ML {*
+ fun split_arg_conv t =
+ let
+ val (lhs, rhs) = dest_ceq t;
+ val (lop, larg) = Thm.dest_comb lhs;
+ val [caT, crT] = lop |> Thm.ctyp_of_term |> Thm.dest_ctyp;
+ in
+ Drule.instantiate' [SOME caT, SOME crT] [NONE, NONE, SOME lop] @{thm arg_cong}
+ end
+*}
+
+ML {*
+ fun split_binop_tac n thm =
+ let
+ val concl = Thm.cprem_of thm n;
+ val (_, cconcl) = Thm.dest_comb concl;
+ val rewr = split_binop_conv cconcl;
+ in
+ rtac rewr n thm
+ end
+ handle CTERM _ => Seq.empty
+*}
+
+
+ML {*
+ fun split_arg_tac n thm =
+ let
+ val concl = Thm.cprem_of thm n;
+ val (_, cconcl) = Thm.dest_comb concl;
+ val rewr = split_arg_conv cconcl;
+ in
+ rtac rewr n thm
+ end
+ handle CTERM _ => Seq.empty
+*}
+
+
+lemma trueprop_cong:
+ shows "(a \<equiv> b) \<Longrightarrow> (Trueprop a \<equiv> Trueprop b)"
+ by auto
+
+lemma list_induct_hol4:
+ fixes P :: "'a list \<Rightarrow> bool"
+ assumes a: "((P []) \<and> (\<forall>t. (P t) \<longrightarrow> (\<forall>h. (P (h # t)))))"
+ shows "\<forall>l. (P l)"
+ using a
+ apply (rule_tac allI)
+ apply (induct_tac "l")
+ apply (simp)
+ apply (metis)
+ done
+
+ML {*
+val no_vars = Thm.rule_attribute (fn context => fn th =>
+ let
+ val ctxt = Variable.set_body false (Context.proof_of context);
+ val ((_, [th']), _) = Variable.import true [th] ctxt;
+ in th' end);
+*}
+
+(*lemma equality_twice:
+ "a = c \<Longrightarrow> b = d \<Longrightarrow> (a = b \<longrightarrow> c = d)"
+by auto*)
+
+
+(*interpretation code *)
+(*val bindd = ((Binding.make ("", Position.none)), ([]: Attrib.src list))
+ val ((_, [eqn1pre]), lthy5) = Variable.import true [ABS_def] lthy4;
+ val eqn1i = Thm.prop_of (symmetric eqn1pre)
+ val ((_, [eqn2pre]), lthy6) = Variable.import true [REP_def] lthy5;
+ val eqn2i = Thm.prop_of (symmetric eqn2pre)
+
+ val exp_morphism = ProofContext.export_morphism lthy6 (ProofContext.init (ProofContext.theory_of lthy6));
+ val exp_term = Morphism.term exp_morphism;
+ val exp = Morphism.thm exp_morphism;
+
+ val mthd = Method.SIMPLE_METHOD ((rtac quot_thm 1) THEN
+ ALLGOALS (simp_tac (HOL_basic_ss addsimps [(symmetric (exp ABS_def)), (symmetric (exp REP_def))])))
+ val mthdt = Method.Basic (fn _ => mthd)
+ val bymt = Proof.global_terminal_proof (mthdt, NONE)
+ val exp_i = [(@{const_name QUOT_TYPE}, ((("QUOT_TYPE_I_" ^ (Binding.name_of qty_name)), true),
+ Expression.Named [("R", rel), ("Abs", abs), ("Rep", rep) ]))]*)
+
+(*||> Local_Theory.theory (fn thy =>
+ let
+ val global_eqns = map exp_term [eqn2i, eqn1i];
+ (* Not sure if the following context should not be used *)
+ val (global_eqns2, lthy7) = Variable.import_terms true global_eqns lthy6;
+ val global_eqns3 = map (fn t => (bindd, t)) global_eqns2;
+ in ProofContext.theory_of (bymt (Expression.interpretation (exp_i, []) global_eqns3 thy)) end)*)