--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/FSet.thy Thu Mar 18 18:10:20 2010 +0100
@@ -0,0 +1,376 @@
+theory FSet
+imports Quotient Quotient_List List
+begin
+
+fun
+ list_eq :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" (infix "\<approx>" 50)
+where
+ "list_eq xs ys = (\<forall>x. x \<in> set xs \<longleftrightarrow> x \<in> set ys)"
+
+lemma list_eq_equivp:
+ shows "equivp list_eq"
+unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def
+by auto
+
+quotient_type
+ 'a fset = "'a list" / "list_eq"
+by (rule list_eq_equivp)
+
+section {* empty fset, finsert and membership *}
+
+quotient_definition
+ fempty ("{||}")
+where
+ "fempty :: 'a fset"
+is "[]::'a list"
+
+quotient_definition
+ "finsert :: 'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
+is "op #"
+
+syntax
+ "@Finset" :: "args => 'a fset" ("{|(_)|}")
+
+translations
+ "{|x, xs|}" == "CONST finsert x {|xs|}"
+ "{|x|}" == "CONST finsert x {||}"
+
+definition
+ memb :: "'a \<Rightarrow> 'a list \<Rightarrow> bool"
+where
+ "memb x xs \<equiv> x \<in> set xs"
+
+quotient_definition
+ fin ("_ |\<in>| _" [50, 51] 50)
+where
+ "fin :: 'a \<Rightarrow> 'a fset \<Rightarrow> bool"
+is "memb"
+
+abbreviation
+ fnotin :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool" ("_ |\<notin>| _" [50, 51] 50)
+where
+ "a |\<notin>| S \<equiv> \<not>(a |\<in>| S)"
+
+lemma memb_rsp[quot_respect]:
+ shows "(op = ===> op \<approx> ===> op =) memb memb"
+by (auto simp add: memb_def)
+
+lemma nil_rsp[quot_respect]:
+ shows "[] \<approx> []"
+by simp
+
+lemma cons_rsp[quot_respect]:
+ shows "(op = ===> op \<approx> ===> op \<approx>) op # op #"
+by simp
+
+section {* Augmenting a set -- @{const finsert} *}
+
+lemma nil_not_cons:
+ shows "\<not>[] \<approx> x # xs"
+ by auto
+
+lemma memb_cons_iff:
+ shows "memb x (y # xs) = (x = y \<or> memb x xs)"
+ by (induct xs) (auto simp add: memb_def)
+
+lemma memb_consI1:
+ shows "memb x (x # xs)"
+ by (simp add: memb_def)
+
+lemma memb_consI2:
+ shows "memb x xs \<Longrightarrow> memb x (y # xs)"
+ by (simp add: memb_def)
+
+lemma memb_absorb:
+ shows "memb x xs \<Longrightarrow> x # xs \<approx> xs"
+ by (induct xs) (auto simp add: memb_def id_simps)
+
+section {* Singletons *}
+
+lemma singleton_list_eq:
+ shows "[x] \<approx> [y] \<longleftrightarrow> x = y"
+ by (simp add: id_simps) auto
+
+section {* Union *}
+
+quotient_definition
+ funion (infixl "|\<union>|" 65)
+where
+ "funion :: 'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
+is
+ "op @"
+
+section {* Cardinality of finite sets *}
+
+fun
+ fcard_raw :: "'a list \<Rightarrow> nat"
+where
+ fcard_raw_nil: "fcard_raw [] = 0"
+| fcard_raw_cons: "fcard_raw (x # xs) = (if memb x xs then fcard_raw xs else Suc (fcard_raw xs))"
+
+quotient_definition
+ "fcard :: 'a fset \<Rightarrow> nat"
+is
+ "fcard_raw"
+
+lemma fcard_raw_gt_0:
+ assumes a: "x \<in> set xs"
+ shows "0 < fcard_raw xs"
+ using a
+ by (induct xs) (auto simp add: memb_def)
+
+lemma fcard_raw_delete_one:
+ "fcard_raw ([x \<leftarrow> xs. x \<noteq> y]) = (if memb y xs then fcard_raw xs - 1 else fcard_raw xs)"
+ by (induct xs) (auto dest: fcard_raw_gt_0 simp add: memb_def)
+
+lemma fcard_raw_rsp_aux:
+ assumes a: "a \<approx> b"
+ shows "fcard_raw a = fcard_raw b"
+ using a
+ apply(induct a arbitrary: b)
+ apply(auto simp add: memb_def)
+ apply(metis)
+ apply(drule_tac x="[x \<leftarrow> b. x \<noteq> a1]" in meta_spec)
+ apply(simp add: fcard_raw_delete_one)
+ apply(metis Suc_pred' fcard_raw_gt_0 fcard_raw_delete_one memb_def)
+ done
+
+lemma fcard_raw_rsp[quot_respect]:
+ "(op \<approx> ===> op =) fcard_raw fcard_raw"
+ by (simp add: fcard_raw_rsp_aux)
+
+
+section {* fmap and fset comprehension *}
+
+quotient_definition
+ "fmap :: ('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset"
+is
+ "map"
+
+text {* raw section *}
+
+lemma map_rsp_aux:
+ assumes a: "a \<approx> b"
+ shows "map f a \<approx> map f b"
+ using a
+ apply(induct a arbitrary: b)
+ apply(auto)
+ apply(metis rev_image_eqI)
+ done
+
+lemma map_rsp[quot_respect]:
+ shows "(op = ===> op \<approx> ===> op \<approx>) map map"
+ by (auto simp add: map_rsp_aux)
+
+lemma cons_left_comm:
+ "x # y # A \<approx> y # x # A"
+ by (auto simp add: id_simps)
+
+lemma cons_left_idem:
+ "x # x # A \<approx> x # A"
+ by (auto simp add: id_simps)
+
+lemma none_mem_nil:
+ "(\<forall>a. a \<notin> set A) = (A \<approx> [])"
+ by simp
+
+lemma finite_set_raw_strong_cases:
+ "(X = []) \<or> (\<exists>a Y. ((a \<notin> set Y) \<and> (X \<approx> a # Y)))"
+ apply (induct X)
+ apply (simp)
+ apply (rule disjI2)
+ apply (erule disjE)
+ apply (rule_tac x="a" in exI)
+ apply (rule_tac x="[]" in exI)
+ apply (simp)
+ apply (erule exE)+
+ apply (case_tac "a = aa")
+ apply (rule_tac x="a" in exI)
+ apply (rule_tac x="Y" in exI)
+ apply (simp)
+ apply (rule_tac x="aa" in exI)
+ apply (rule_tac x="a # Y" in exI)
+ apply (auto)
+ done
+
+fun
+ delete_raw :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a list"
+where
+ "delete_raw [] x = []"
+| "delete_raw (a # A) x = (if (a = x) then delete_raw A x else a # (delete_raw A x))"
+
+lemma mem_delete_raw:
+ "x \<in> set (delete_raw A a) = (x \<in> set A \<and> \<not>(x = a))"
+ by (induct A arbitrary: x a) (auto)
+
+lemma mem_delete_raw_ident:
+ "\<not>(a \<in> set (delete_raw A a))"
+ by (induct A) (auto)
+
+lemma not_mem_delete_raw_ident:
+ "b \<notin> set A \<Longrightarrow> (delete_raw A b = A)"
+ by (induct A) (auto)
+
+lemma finite_set_raw_delete_raw_cases:
+ "X = [] \<or> (\<exists>a. a mem X \<and> X \<approx> a # delete_raw X a)"
+ by (induct X) (auto)
+
+lemma list2set_thm:
+ shows "set [] = {}"
+ and "set (h # t) = insert h (set t)"
+ by (auto)
+
+lemma list2set_rsp[quot_respect]:
+ "(op \<approx> ===> op =) set set"
+ by auto
+
+definition
+ rsp_fold
+where
+ "rsp_fold f = (\<forall>u v w. (f u (f v w) = f v (f u w)))"
+
+primrec
+ fold_raw :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a list \<Rightarrow> 'b"
+where
+ "fold_raw f z [] = z"
+| "fold_raw f z (a # A) =
+ (if (rsp_fold f) then
+ if a mem A then fold_raw f z A
+ else f a (fold_raw f z A)
+ else z)"
+
+section {* Constants on the Quotient Type *}
+
+quotient_definition
+ "fdelete :: 'a fset \<Rightarrow> 'a \<Rightarrow> 'a fset"
+ is "delete_raw"
+
+quotient_definition
+ "fset_to_set :: 'a fset \<Rightarrow> 'a set"
+ is "set"
+
+lemma funion_sym_pre:
+ "a @ b \<approx> b @ a"
+ by auto
+
+
+lemma append_rsp[quot_respect]:
+ shows "(op \<approx> ===> op \<approx> ===> op \<approx>) op @ op @"
+ by (auto)
+
+
+
+section {* lifted part *}
+
+
+lemma fin_finsert_iff[simp]:
+ "x |\<in>| finsert y S = (x = y \<or> x |\<in>| S)"
+ by (lifting memb_cons_iff)
+
+lemma
+ shows finsertI1: "x |\<in>| finsert x S"
+ and finsertI2: "x |\<in>| S \<Longrightarrow> x |\<in>| finsert y S"
+ by (lifting memb_consI1, lifting memb_consI2)
+
+lemma finsert_absorb[simp]:
+ shows "x |\<in>| S \<Longrightarrow> finsert x S = S"
+ by (lifting memb_absorb)
+
+lemma fempty_not_finsert[simp]:
+ shows "{||} \<noteq> finsert x S"
+ by (lifting nil_not_cons)
+
+lemma finsert_left_comm:
+ "finsert a (finsert b S) = finsert b (finsert a S)"
+ by (lifting cons_left_comm)
+
+lemma finsert_left_idem:
+ "finsert a (finsert a S) = finsert a S"
+ by (lifting cons_left_idem)
+
+lemma fsingleton_eq[simp]:
+ shows "{|x|} = {|y|} \<longleftrightarrow> x = y"
+ by (lifting singleton_list_eq)
+
+text {* fset_to_set *}
+
+lemma fset_to_set_simps:
+ "fset_to_set {||} = {}"
+ "fset_to_set (finsert (h :: 'b) t) = insert h (fset_to_set t)"
+ by (lifting list2set_thm)
+
+lemma in_fset_to_set:
+ "x \<in> fset_to_set xs \<equiv> x |\<in>| xs"
+ by (lifting memb_def[symmetric])
+
+lemma none_in_fempty:
+ "(\<forall>a. a \<notin> fset_to_set A) = (A = {||})"
+ by (lifting none_mem_nil)
+
+text {* fcard *}
+
+lemma fcard_fempty [simp]:
+ shows "fcard {||} = 0"
+ by (lifting fcard_raw_nil)
+
+lemma fcard_finsert_if [simp]:
+ shows "fcard (finsert x S) = (if x |\<in>| S then fcard S else Suc (fcard S))"
+ by (lifting fcard_raw_cons)
+
+lemma fcard_gt_0: "x \<in> fset_to_set xs \<Longrightarrow> 0 < fcard xs"
+ by (lifting fcard_raw_gt_0)
+
+text {* funion *}
+
+lemma funion_simps[simp]:
+ "{||} |\<union>| ys = ys"
+ "finsert x xs |\<union>| ys = finsert x (xs |\<union>| ys)"
+ by (lifting append.simps)
+
+lemma funion_sym:
+ "a |\<union>| b = b |\<union>| a"
+ by (lifting funion_sym_pre)
+
+lemma funion_assoc:
+ "x |\<union>| xa |\<union>| xb = x |\<union>| (xa |\<union>| xb)"
+ by (lifting append_assoc)
+
+section {* Induction and Cases rules for finite sets *}
+
+lemma fset_strong_cases:
+ "X = {||} \<or> (\<exists>a Y. a \<notin> fset_to_set Y \<and> X = finsert a Y)"
+ by (lifting finite_set_raw_strong_cases)
+
+lemma fset_exhaust[case_names fempty finsert, cases type: fset]:
+ shows "\<lbrakk>S = {||} \<Longrightarrow> P; \<And>x S'. S = finsert x S' \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
+ by (lifting list.exhaust)
+
+lemma fset_induct[case_names fempty finsert]:
+ shows "\<lbrakk>P {||}; \<And>x S. P S \<Longrightarrow> P (finsert x S)\<rbrakk> \<Longrightarrow> P S"
+ by (lifting list.induct)
+
+lemma fset_induct2[case_names fempty finsert, induct type: fset]:
+ assumes prem1: "P {||}"
+ and prem2: "\<And>x S. \<lbrakk>x |\<notin>| S; P S\<rbrakk> \<Longrightarrow> P (finsert x S)"
+ shows "P S"
+proof(induct S rule: fset_induct)
+ case fempty
+ show "P {||}" by (rule prem1)
+next
+ case (finsert x S)
+ have asm: "P S" by fact
+ show "P (finsert x S)"
+ proof(cases "x |\<in>| S")
+ case True
+ have "x |\<in>| S" by fact
+ then show "P (finsert x S)" using asm by simp
+ next
+ case False
+ have "x |\<notin>| S" by fact
+ then show "P (finsert x S)" using prem2 asm by simp
+ qed
+qed
+
+
+
+end