--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal-General/nominal_eqvt.ML Wed Apr 14 14:41:54 2010 +0200
@@ -0,0 +1,155 @@
+(* Title: nominal_eqvt.ML
+ Author: Stefan Berghofer
+ Author: Christian Urban
+
+ Automatic proofs for equivariance of inductive predicates.
+*)
+
+signature NOMINAL_EQVT =
+sig
+ val eqvt_rel_tac : xstring -> Proof.context -> local_theory
+end
+
+structure Nominal_Eqvt : NOMINAL_EQVT =
+struct
+
+open Nominal_Permeq;
+open Nominal_ThmDecls;
+
+val atomize_conv =
+ MetaSimplifier.rewrite_cterm (true, false, false) (K (K NONE))
+ (HOL_basic_ss addsimps @{thms induct_atomize});
+val atomize_intr = Conv.fconv_rule (Conv.prems_conv ~1 atomize_conv);
+fun atomize_induct ctxt = Conv.fconv_rule (Conv.prems_conv ~1
+ (Conv.params_conv ~1 (K (Conv.prems_conv ~1 atomize_conv)) ctxt));
+
+fun map_term f t =
+ (case f t of
+ NONE => map_term' f t
+ | x => x)
+and map_term' f (t $ u) =
+ (case (map_term f t, map_term f u) of
+ (NONE, NONE) => NONE
+ | (SOME t'', NONE) => SOME (t'' $ u)
+ | (NONE, SOME u'') => SOME (t $ u'')
+ | (SOME t'', SOME u'') => SOME (t'' $ u''))
+ | map_term' f (Abs (s, T, t)) =
+ (case map_term f t of
+ NONE => NONE
+ | SOME t'' => SOME (Abs (s, T, t'')))
+ | map_term' _ _ = NONE;
+
+fun map_thm_tac ctxt tac thm =
+let
+ val monos = Inductive.get_monos ctxt
+in
+ EVERY [cut_facts_tac [thm] 1, etac rev_mp 1,
+ REPEAT_DETERM (FIRSTGOAL (resolve_tac monos)),
+ REPEAT_DETERM (rtac impI 1 THEN (atac 1 ORELSE tac))]
+end
+
+(*
+ proves F[f t] from F[t] where F[t] is the given theorem
+
+ - F needs to be monotone
+ - f returns either SOME for a term it fires
+ and NONE elsewhere
+*)
+fun map_thm ctxt f tac thm =
+let
+ val opt_goal_trm = map_term f (prop_of thm)
+ fun prove goal =
+ Goal.prove ctxt [] [] goal (fn _ => map_thm_tac ctxt tac thm)
+in
+ case opt_goal_trm of
+ NONE => thm
+ | SOME goal => prove goal
+end
+
+fun transform_prem ctxt names thm =
+let
+ fun split_conj names (Const ("op &", _) $ p $ q) =
+ (case head_of p of
+ Const (name, _) => if name mem names then SOME q else NONE
+ | _ => NONE)
+ | split_conj _ _ = NONE;
+in
+ map_thm ctxt (split_conj names) (etac conjunct2 1) thm
+end
+
+fun single_case_tac ctxt pred_names pi intro =
+let
+ val thy = ProofContext.theory_of ctxt
+ val cpi = Thm.cterm_of thy (mk_minus pi)
+ val rule = Drule.instantiate' [] [SOME cpi] @{thm permute_boolE}
+in
+ eqvt_strict_tac ctxt [] [] THEN'
+ SUBPROOF (fn {prems, context as ctxt, ...} =>
+ let
+ val prems' = map (transform_prem ctxt pred_names) prems
+ val side_cond_tac = EVERY'
+ [ rtac rule,
+ eqvt_strict_tac ctxt @{thms permute_minus_cancel(2)} [],
+ resolve_tac prems' ]
+ in
+ HEADGOAL (rtac intro THEN_ALL_NEW (resolve_tac prems' ORELSE' side_cond_tac))
+ end) ctxt
+end
+
+
+fun prepare_pred params_no pi pred =
+let
+ val (c, xs) = strip_comb pred;
+ val (xs1, xs2) = chop params_no xs
+in
+ HOLogic.mk_imp
+ (pred, list_comb (c, xs1 @ map (mk_perm pi) xs2))
+end
+
+
+fun note_named_thm (name, thm) ctxt =
+let
+ val thm_name = Binding.qualified_name
+ (Long_Name.qualify (Long_Name.base_name name) "eqvt")
+ val attr = Attrib.internal (K eqvt_add)
+in
+ Local_Theory.note ((thm_name, [attr]), [thm]) ctxt
+end
+
+
+fun eqvt_rel_tac pred_name ctxt =
+let
+ val thy = ProofContext.theory_of ctxt
+ val ({names, ...}, {raw_induct, intrs, ...}) =
+ Inductive.the_inductive ctxt (Sign.intern_const thy pred_name)
+ val raw_induct = atomize_induct ctxt raw_induct;
+ val intros = map atomize_intr intrs;
+ val params_no = length (Inductive.params_of raw_induct)
+ val (([raw_concl], [raw_pi]), ctxt') =
+ ctxt |> Variable.import_terms false [concl_of raw_induct]
+ ||>> Variable.variant_fixes ["pi"]
+ val pi = Free (raw_pi, @{typ perm})
+ val preds = map (fst o HOLogic.dest_imp)
+ (HOLogic.dest_conj (HOLogic.dest_Trueprop raw_concl));
+ val goal = HOLogic.mk_Trueprop
+ (foldr1 HOLogic.mk_conj (map (prepare_pred params_no pi) preds))
+ val thm = Goal.prove ctxt' [] [] goal (fn {context,...} =>
+ HEADGOAL (EVERY' (rtac raw_induct :: map (single_case_tac context names pi) intros)))
+ |> singleton (ProofContext.export ctxt' ctxt)
+ val thms = map (fn th => zero_var_indexes (th RS mp)) (Datatype_Aux.split_conj_thm thm)
+in
+ ctxt |> fold_map note_named_thm (names ~~ thms)
+ |> snd
+end
+
+
+local structure P = OuterParse and K = OuterKeyword in
+
+val _ =
+ OuterSyntax.local_theory "equivariance"
+ "prove equivariance for inductive predicate involving nominal datatypes" K.thy_decl
+ (P.xname >> eqvt_rel_tac);
+
+end;
+
+end (* structure *)
\ No newline at end of file