--- a/Nominal/NewParser.thy Sat May 01 09:15:46 2010 +0100
+++ b/Nominal/NewParser.thy Sun May 02 14:06:26 2010 +0100
@@ -258,9 +258,78 @@
end
*}
+
+text {*
+ nominal_datatype2 does the following things in order:
+
+Parser.thy/raw_nominal_decls
+ 1) define the raw datatype
+ 2) define the raw binding functions
+
+Perm.thy/define_raw_perms
+ 3) define permutations of the raw datatype and show that the raw type is
+ in the pt typeclass
+
+Lift.thy/define_fv_alpha_export, Fv.thy/define_fv & define_alpha
+ 4) define fv and fv_bn
+ 5) define alpha and alpha_bn
+
+Perm.thy/distinct_rel
+ 6) prove alpha_distincts (C1 x \<notsimeq> C2 y ...) (Proof by cases; simp)
+
+Tacs.thy/build_rel_inj
+ 6) prove alpha_eq_iff (C1 x = C2 y \<leftrightarrow> P x y ...)
+ (left-to-right by intro rule, right-to-left by cases; simp)
+Equivp.thy/prove_eqvt
+ 7) prove bn_eqvt (common induction on the raw datatype)
+ 8) prove fv_eqvt (common induction on the raw datatype with help of above)
+Rsp.thy/build_alpha_eqvts
+ 9) prove alpha_eqvt and alpha_bn_eqvt
+ (common alpha-induction, unfolding alpha_gen, permute of #* and =)
+Equivp.thy/build_alpha_refl & Equivp.thy/build_equivps
+ 10) prove that alpha and alpha_bn are equivalence relations
+ (common induction and application of 'compose' lemmas)
+Lift.thy/define_quotient_types
+ 11) define quotient types
+Rsp.thy/build_fvbv_rsps
+ 12) prove bn respects (common induction and simp with alpha_gen)
+Rsp.thy/prove_const_rsp
+ 13) prove fv respects (common induction and simp with alpha_gen)
+ 14) prove permute respects (unfolds to alpha_eqvt)
+Rsp.thy/prove_alpha_bn_rsp
+ 15) prove alpha_bn respects
+ (alpha_induct then cases then sym and trans of the relations)
+Rsp.thy/prove_alpha_alphabn
+ 16) show that alpha implies alpha_bn (by unduction, needed in following step)
+Rsp.thy/prove_const_rsp
+ 17) prove respects for all datatype constructors
+ (unfold eq_iff and alpha_gen; introduce zero permutations; simp)
+Perm.thy/quotient_lift_consts_export
+ 18) define lifted constructors, fv, bn, alpha_bn, permutations
+Perm.thy/define_lifted_perms
+ 19) lift permutation zero and add properties to show that quotient type is in the pt typeclass
+Lift.thy/lift_thm
+ 20) lift permutation simplifications
+ 21) lift induction
+ 22) lift fv
+ 23) lift bn
+ 24) lift eq_iff
+ 25) lift alpha_distincts
+ 26) lift fv and bn eqvts
+Equivp.thy/prove_supports
+ 27) prove that union of arguments supports constructors
+Equivp.thy/prove_fs
+ 28) show that the lifted type is in fs typeclass (* by q_induct, supports *)
+Equivp.thy/supp_eq
+ 29) prove supp = fv
+*}
+
+
ML {*
fun nominal_datatype2 dts bn_funs bn_eqs bclauses lthy =
let
+
+ (* definition of the raw datatype and raw bn-functions *)
val ((((raw_dt_names, (raw_bn_funs_loc, raw_bn_eqs_loc)), raw_bclauses), raw_bns), lthy1) =
raw_nominal_decls dts bn_funs bn_eqs bclauses lthy
@@ -279,6 +348,7 @@
val induct = #induct dtinfo;
val exhausts = map #exhaust dtinfos;
+ (* definitions of raw permutations *)
val ((raw_perm_def, raw_perm_simps, perms), lthy2) =
Local_Theory.theory_result (define_raw_perms dtinfo (length dts)) lthy1;
@@ -579,6 +649,8 @@
(main_parser >> nominal_datatype2_cmd)
*}
+
+(*
atom_decl name
nominal_datatype lam =
@@ -658,21 +730,24 @@
thm ty_tys.fv[simplified ty_tys.supp]
thm ty_tys.eq_iff
+*)
+
(* some further tests *)
-nominal_datatype ty =
- Vr "name"
-| Fn "ty" "ty"
+(*
+nominal_datatype ty2 =
+ Vr2 "name"
+| Fn2 "ty2" "ty2"
-nominal_datatype tys =
- All xs::"name fset" ty::"ty_raw" bind_res xs in ty
+nominal_datatype tys2 =
+ All2 xs::"name fset" ty::"ty2" bind_res xs in ty
nominal_datatype lam2 =
Var2 "name"
| App2 "lam2" "lam2 list"
| Lam2 x::"name" t::"lam2" bind x in t
-
+*)