--- a/Attic/Quot/Examples/IntEx.thy Fri Apr 23 09:54:42 2010 +0200
+++ b/Attic/Quot/Examples/IntEx.thy Fri Apr 23 10:21:34 2010 +0200
@@ -165,27 +165,6 @@
apply(lifting plus_assoc_pre)
done
-lemma int_induct_raw:
- assumes a: "P (0::nat, 0)"
- and b: "\<And>i. P i \<Longrightarrow> P (my_plus i (1,0))"
- and c: "\<And>i. P i \<Longrightarrow> P (my_plus i (my_neg (1,0)))"
- shows "P x"
- apply(case_tac x) apply(simp)
- apply(rule_tac x="b" in spec)
- apply(rule_tac Nat.induct)
- apply(rule allI)
- apply(rule_tac Nat.induct)
- using a b c apply(auto)
- done
-
-lemma int_induct:
- assumes a: "P ZERO"
- and b: "\<And>i. P i \<Longrightarrow> P (PLUS i ONE)"
- and c: "\<And>i. P i \<Longrightarrow> P (PLUS i (NEG ONE))"
- shows "P x"
- using a b c
- by (lifting int_induct_raw)
-
lemma ex1tst: "Bex1_rel (op \<approx>) (\<lambda>x :: nat \<times> nat. x \<approx> x)"
sorry