--- a/QuotScript.thy Mon Dec 07 04:41:42 2009 +0100
+++ b/QuotScript.thy Mon Dec 07 08:45:04 2009 +0100
@@ -19,13 +19,17 @@
unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq
by (blast)
-lemma equivp_refl:
- shows "equivp R \<Longrightarrow> (\<And>x. R x x)"
- by (simp add: equivp_reflp_symp_transp reflp_def)
-
lemma equivp_reflp:
shows "equivp E \<Longrightarrow> (\<And>x. E x x)"
- by (simp add: equivp_reflp_symp_transp reflp_def)
+ by (simp only: equivp_reflp_symp_transp reflp_def)
+
+lemma equivp_symp:
+ shows "equivp E \<Longrightarrow> (\<And>x y. E x y \<Longrightarrow> E y x)"
+ by (metis equivp_reflp_symp_transp symp_def)
+
+lemma equivp_transp:
+ shows "equivp E \<Longrightarrow> (\<And>x y z. E x y \<Longrightarrow> E y z \<Longrightarrow> E x z)"
+by (metis equivp_reflp_symp_transp transp_def)
definition
"part_equivp E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))"
@@ -95,11 +99,6 @@
by metis
fun
- prod_rel
-where
- "prod_rel r1 r2 = (\<lambda>(a,b) (c,d). r1 a c \<and> r2 b d)"
-
-fun
fun_map
where
"fun_map f g h x = g (h (f x))"