--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Quot/Quotient_Product.thy Thu Feb 11 10:06:02 2010 +0100
@@ -0,0 +1,104 @@
+(* Title: Quotient_Product.thy
+ Author: Cezary Kaliszyk and Christian Urban
+*)
+theory Quotient_Product
+imports Quotient
+begin
+
+section {* Quotient infrastructure for the product type. *}
+
+fun
+ prod_rel
+where
+ "prod_rel R1 R2 = (\<lambda>(a, b) (c, d). R1 a c \<and> R2 b d)"
+
+declare [[map * = (prod_fun, prod_rel)]]
+
+
+lemma prod_equivp[quot_equiv]:
+ assumes a: "equivp R1"
+ assumes b: "equivp R2"
+ shows "equivp (prod_rel R1 R2)"
+ apply(rule equivpI)
+ unfolding reflp_def symp_def transp_def
+ apply(simp_all add: split_paired_all)
+ apply(blast intro: equivp_reflp[OF a] equivp_reflp[OF b])
+ apply(blast intro: equivp_symp[OF a] equivp_symp[OF b])
+ apply(blast intro: equivp_transp[OF a] equivp_transp[OF b])
+ done
+
+lemma prod_quotient[quot_thm]:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ assumes q2: "Quotient R2 Abs2 Rep2"
+ shows "Quotient (prod_rel R1 R2) (prod_fun Abs1 Abs2) (prod_fun Rep1 Rep2)"
+ unfolding Quotient_def
+ apply(simp add: split_paired_all)
+ apply(simp add: Quotient_abs_rep[OF q1] Quotient_rel_rep[OF q1])
+ apply(simp add: Quotient_abs_rep[OF q2] Quotient_rel_rep[OF q2])
+ using q1 q2
+ unfolding Quotient_def
+ apply(blast)
+ done
+
+lemma Pair_rsp[quot_respect]:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ assumes q2: "Quotient R2 Abs2 Rep2"
+ shows "(R1 ===> R2 ===> prod_rel R1 R2) Pair Pair"
+ by simp
+
+lemma Pair_prs[quot_preserve]:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ assumes q2: "Quotient R2 Abs2 Rep2"
+ shows "(Rep1 ---> Rep2 ---> (prod_fun Abs1 Abs2)) Pair = Pair"
+ apply(simp add: expand_fun_eq)
+ apply(simp add: Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
+ done
+
+lemma fst_rsp[quot_respect]:
+ assumes "Quotient R1 Abs1 Rep1"
+ assumes "Quotient R2 Abs2 Rep2"
+ shows "(prod_rel R1 R2 ===> R1) fst fst"
+ by simp
+
+lemma fst_prs[quot_preserve]:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ assumes q2: "Quotient R2 Abs2 Rep2"
+ shows "(prod_fun Rep1 Rep2 ---> Abs1) fst = fst"
+ apply(simp add: expand_fun_eq)
+ apply(simp add: Quotient_abs_rep[OF q1])
+ done
+
+lemma snd_rsp[quot_respect]:
+ assumes "Quotient R1 Abs1 Rep1"
+ assumes "Quotient R2 Abs2 Rep2"
+ shows "(prod_rel R1 R2 ===> R2) snd snd"
+ by simp
+
+lemma snd_prs[quot_preserve]:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ assumes q2: "Quotient R2 Abs2 Rep2"
+ shows "(prod_fun Rep1 Rep2 ---> Abs2) snd = snd"
+ apply(simp add: expand_fun_eq)
+ apply(simp add: Quotient_abs_rep[OF q2])
+ done
+
+lemma split_rsp[quot_respect]:
+ shows "((R1 ===> R2 ===> (op =)) ===> (prod_rel R1 R2) ===> (op =)) split split"
+ by auto
+
+lemma split_prs[quot_preserve]:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ and q2: "Quotient R2 Abs2 Rep2"
+ shows "(((Abs1 ---> Abs2 ---> id) ---> prod_fun Rep1 Rep2 ---> id) split) = split"
+ by (simp add: expand_fun_eq Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
+
+lemma prod_fun_id[id_simps]:
+ shows "prod_fun id id = id"
+ by (simp add: prod_fun_def)
+
+lemma prod_rel_eq[id_simps]:
+ shows "prod_rel (op =) (op =) = (op =)"
+ by (simp add: expand_fun_eq)
+
+
+end