--- a/Quot/QuotOption.thy Thu Feb 11 09:23:59 2010 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,80 +0,0 @@
-(* Title: QuotOption.thy
- Author: Cezary Kaliszyk and Christian Urban
-*)
-theory QuotOption
-imports QuotMain
-begin
-
-section {* Quotient infrastructure for the option type. *}
-
-fun
- option_rel
-where
- "option_rel R None None = True"
-| "option_rel R (Some x) None = False"
-| "option_rel R None (Some x) = False"
-| "option_rel R (Some x) (Some y) = R x y"
-
-declare [[map option = (Option.map, option_rel)]]
-
-text {* should probably be in Option.thy *}
-lemma split_option_all:
- shows "(\<forall>x. P x) \<longleftrightarrow> P None \<and> (\<forall>a. P (Some a))"
- apply(auto)
- apply(case_tac x)
- apply(simp_all)
- done
-
-lemma option_quotient[quot_thm]:
- assumes q: "Quotient R Abs Rep"
- shows "Quotient (option_rel R) (Option.map Abs) (Option.map Rep)"
- unfolding Quotient_def
- apply(simp add: split_option_all)
- apply(simp add: Quotient_abs_rep[OF q] Quotient_rel_rep[OF q])
- using q
- unfolding Quotient_def
- apply(blast)
- done
-
-lemma option_equivp[quot_equiv]:
- assumes a: "equivp R"
- shows "equivp (option_rel R)"
- apply(rule equivpI)
- unfolding reflp_def symp_def transp_def
- apply(simp_all add: split_option_all)
- apply(blast intro: equivp_reflp[OF a])
- apply(blast intro: equivp_symp[OF a])
- apply(blast intro: equivp_transp[OF a])
- done
-
-lemma option_None_rsp[quot_respect]:
- assumes q: "Quotient R Abs Rep"
- shows "option_rel R None None"
- by simp
-
-lemma option_Some_rsp[quot_respect]:
- assumes q: "Quotient R Abs Rep"
- shows "(R ===> option_rel R) Some Some"
- by simp
-
-lemma option_None_prs[quot_preserve]:
- assumes q: "Quotient R Abs Rep"
- shows "Option.map Abs None = None"
- by simp
-
-lemma option_Some_prs[quot_preserve]:
- assumes q: "Quotient R Abs Rep"
- shows "(Rep ---> Option.map Abs) Some = Some"
- apply(simp add: expand_fun_eq)
- apply(simp add: Quotient_abs_rep[OF q])
- done
-
-lemma option_map_id[id_simps]:
- shows "Option.map id = id"
- by (simp add: expand_fun_eq split_option_all)
-
-lemma option_rel_eq[id_simps]:
- shows "option_rel (op =) = (op =)"
- by (simp add: expand_fun_eq split_option_all)
-
-end