--- a/Quot/QuotMain.thy Thu Feb 11 09:23:59 2010 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,802 +0,0 @@
-(* Title: QuotMain.thy
- Author: Cezary Kaliszyk and Christian Urban
-*)
-
-theory QuotMain
-imports Plain ATP_Linkup
-uses
- ("quotient_info.ML")
- ("quotient_typ.ML")
- ("quotient_def.ML")
- ("quotient_term.ML")
- ("quotient_tacs.ML")
-begin
-
-text {*
- Basic definition for equivalence relations
- that are represented by predicates.
-*}
-
-definition
- "equivp E \<longleftrightarrow> (\<forall>x y. E x y = (E x = E y))"
-
-definition
- "reflp E \<longleftrightarrow> (\<forall>x. E x x)"
-
-definition
- "symp E \<longleftrightarrow> (\<forall>x y. E x y \<longrightarrow> E y x)"
-
-definition
- "transp E \<longleftrightarrow> (\<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z)"
-
-lemma equivp_reflp_symp_transp:
- shows "equivp E = (reflp E \<and> symp E \<and> transp E)"
- unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq
- by blast
-
-lemma equivp_reflp:
- shows "equivp E \<Longrightarrow> E x x"
- by (simp only: equivp_reflp_symp_transp reflp_def)
-
-lemma equivp_symp:
- shows "equivp E \<Longrightarrow> E x y \<Longrightarrow> E y x"
- by (metis equivp_reflp_symp_transp symp_def)
-
-lemma equivp_transp:
- shows "equivp E \<Longrightarrow> E x y \<Longrightarrow> E y z \<Longrightarrow> E x z"
- by (metis equivp_reflp_symp_transp transp_def)
-
-lemma equivpI:
- assumes "reflp R" "symp R" "transp R"
- shows "equivp R"
- using assms by (simp add: equivp_reflp_symp_transp)
-
-lemma eq_imp_rel:
- shows "equivp R \<Longrightarrow> a = b \<longrightarrow> R a b"
- by (simp add: equivp_reflp)
-
-lemma identity_equivp:
- shows "equivp (op =)"
- unfolding equivp_def
- by auto
-
-
-text {* Partial equivalences: not yet used anywhere *}
-definition
- "part_equivp E \<longleftrightarrow> ((\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y))))"
-
-lemma equivp_implies_part_equivp:
- assumes a: "equivp E"
- shows "part_equivp E"
- using a
- unfolding equivp_def part_equivp_def
- by auto
-
-text {* Composition of Relations *}
-
-abbreviation
- rel_conj (infixr "OOO" 75)
-where
- "r1 OOO r2 \<equiv> r1 OO r2 OO r1"
-
-lemma eq_comp_r:
- shows "((op =) OOO R) = R"
- by (auto simp add: expand_fun_eq)
-
-section {* Respects predicate *}
-
-definition
- Respects
-where
- "Respects R x \<longleftrightarrow> (R x x)"
-
-lemma in_respects:
- shows "(x \<in> Respects R) = R x x"
- unfolding mem_def Respects_def
- by simp
-
-section {* Function map and function relation *}
-
-definition
- fun_map (infixr "--->" 55)
-where
-[simp]: "fun_map f g h x = g (h (f x))"
-
-definition
- fun_rel (infixr "===>" 55)
-where
-[simp]: "fun_rel E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))"
-
-
-lemma fun_map_id:
- shows "(id ---> id) = id"
- by (simp add: expand_fun_eq id_def)
-
-lemma fun_rel_eq:
- shows "((op =) ===> (op =)) = (op =)"
- by (simp add: expand_fun_eq)
-
-lemma fun_rel_id:
- assumes a: "\<And>x y. R1 x y \<Longrightarrow> R2 (f x) (g y)"
- shows "(R1 ===> R2) f g"
- using a by simp
-
-lemma fun_rel_id_asm:
- assumes a: "\<And>x y. R1 x y \<Longrightarrow> (A \<longrightarrow> R2 (f x) (g y))"
- shows "A \<longrightarrow> (R1 ===> R2) f g"
- using a by auto
-
-
-section {* Quotient Predicate *}
-
-definition
- "Quotient E Abs Rep \<longleftrightarrow>
- (\<forall>a. Abs (Rep a) = a) \<and> (\<forall>a. E (Rep a) (Rep a)) \<and>
- (\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))"
-
-lemma Quotient_abs_rep:
- assumes a: "Quotient E Abs Rep"
- shows "Abs (Rep a) = a"
- using a
- unfolding Quotient_def
- by simp
-
-lemma Quotient_rep_reflp:
- assumes a: "Quotient E Abs Rep"
- shows "E (Rep a) (Rep a)"
- using a
- unfolding Quotient_def
- by blast
-
-lemma Quotient_rel:
- assumes a: "Quotient E Abs Rep"
- shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))"
- using a
- unfolding Quotient_def
- by blast
-
-lemma Quotient_rel_rep:
- assumes a: "Quotient R Abs Rep"
- shows "R (Rep a) (Rep b) = (a = b)"
- using a
- unfolding Quotient_def
- by metis
-
-lemma Quotient_rep_abs:
- assumes a: "Quotient R Abs Rep"
- shows "R r r \<Longrightarrow> R (Rep (Abs r)) r"
- using a unfolding Quotient_def
- by blast
-
-lemma Quotient_rel_abs:
- assumes a: "Quotient E Abs Rep"
- shows "E r s \<Longrightarrow> Abs r = Abs s"
- using a unfolding Quotient_def
- by blast
-
-lemma Quotient_symp:
- assumes a: "Quotient E Abs Rep"
- shows "symp E"
- using a unfolding Quotient_def symp_def
- by metis
-
-lemma Quotient_transp:
- assumes a: "Quotient E Abs Rep"
- shows "transp E"
- using a unfolding Quotient_def transp_def
- by metis
-
-lemma identity_quotient:
- shows "Quotient (op =) id id"
- unfolding Quotient_def id_def
- by blast
-
-lemma fun_quotient:
- assumes q1: "Quotient R1 abs1 rep1"
- and q2: "Quotient R2 abs2 rep2"
- shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
-proof -
- have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
- using q1 q2
- unfolding Quotient_def
- unfolding expand_fun_eq
- by simp
- moreover
- have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
- using q1 q2
- unfolding Quotient_def
- by (simp (no_asm)) (metis)
- moreover
- have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and>
- (rep1 ---> abs2) r = (rep1 ---> abs2) s)"
- unfolding expand_fun_eq
- apply(auto)
- using q1 q2 unfolding Quotient_def
- apply(metis)
- using q1 q2 unfolding Quotient_def
- apply(metis)
- using q1 q2 unfolding Quotient_def
- apply(metis)
- using q1 q2 unfolding Quotient_def
- apply(metis)
- done
- ultimately
- show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
- unfolding Quotient_def by blast
-qed
-
-lemma abs_o_rep:
- assumes a: "Quotient R Abs Rep"
- shows "Abs o Rep = id"
- unfolding expand_fun_eq
- by (simp add: Quotient_abs_rep[OF a])
-
-lemma equals_rsp:
- assumes q: "Quotient R Abs Rep"
- and a: "R xa xb" "R ya yb"
- shows "R xa ya = R xb yb"
- using a Quotient_symp[OF q] Quotient_transp[OF q]
- unfolding symp_def transp_def
- by blast
-
-lemma lambda_prs:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)"
- unfolding expand_fun_eq
- using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
- by simp
-
-lemma lambda_prs1:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)"
- unfolding expand_fun_eq
- using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
- by simp
-
-lemma rep_abs_rsp:
- assumes q: "Quotient R Abs Rep"
- and a: "R x1 x2"
- shows "R x1 (Rep (Abs x2))"
- using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]
- by metis
-
-lemma rep_abs_rsp_left:
- assumes q: "Quotient R Abs Rep"
- and a: "R x1 x2"
- shows "R (Rep (Abs x1)) x2"
- using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]
- by metis
-
-text{*
- In the following theorem R1 can be instantiated with anything,
- but we know some of the types of the Rep and Abs functions;
- so by solving Quotient assumptions we can get a unique R1 that
- will be provable; which is why we need to use apply_rsp and
- not the primed version *}
-
-lemma apply_rsp:
- fixes f g::"'a \<Rightarrow> 'c"
- assumes q: "Quotient R1 Abs1 Rep1"
- and a: "(R1 ===> R2) f g" "R1 x y"
- shows "R2 (f x) (g y)"
- using a by simp
-
-lemma apply_rsp':
- assumes a: "(R1 ===> R2) f g" "R1 x y"
- shows "R2 (f x) (g y)"
- using a by simp
-
-section {* lemmas for regularisation of ball and bex *}
-
-lemma ball_reg_eqv:
- fixes P :: "'a \<Rightarrow> bool"
- assumes a: "equivp R"
- shows "Ball (Respects R) P = (All P)"
- using a
- unfolding equivp_def
- by (auto simp add: in_respects)
-
-lemma bex_reg_eqv:
- fixes P :: "'a \<Rightarrow> bool"
- assumes a: "equivp R"
- shows "Bex (Respects R) P = (Ex P)"
- using a
- unfolding equivp_def
- by (auto simp add: in_respects)
-
-lemma ball_reg_right:
- assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x"
- shows "All P \<longrightarrow> Ball R Q"
- using a by (metis COMBC_def Collect_def Collect_mem_eq)
-
-lemma bex_reg_left:
- assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x"
- shows "Bex R Q \<longrightarrow> Ex P"
- using a by (metis COMBC_def Collect_def Collect_mem_eq)
-
-lemma ball_reg_left:
- assumes a: "equivp R"
- shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P"
- using a by (metis equivp_reflp in_respects)
-
-lemma bex_reg_right:
- assumes a: "equivp R"
- shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P"
- using a by (metis equivp_reflp in_respects)
-
-lemma ball_reg_eqv_range:
- fixes P::"'a \<Rightarrow> bool"
- and x::"'a"
- assumes a: "equivp R2"
- shows "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))"
- apply(rule iffI)
- apply(rule allI)
- apply(drule_tac x="\<lambda>y. f x" in bspec)
- apply(simp add: in_respects)
- apply(rule impI)
- using a equivp_reflp_symp_transp[of "R2"]
- apply(simp add: reflp_def)
- apply(simp)
- apply(simp)
- done
-
-lemma bex_reg_eqv_range:
- assumes a: "equivp R2"
- shows "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))"
- apply(auto)
- apply(rule_tac x="\<lambda>y. f x" in bexI)
- apply(simp)
- apply(simp add: Respects_def in_respects)
- apply(rule impI)
- using a equivp_reflp_symp_transp[of "R2"]
- apply(simp add: reflp_def)
- done
-
-lemma all_reg:
- assumes a: "!x :: 'a. (P x --> Q x)"
- and b: "All P"
- shows "All Q"
- using a b by (metis)
-
-lemma ex_reg:
- assumes a: "!x :: 'a. (P x --> Q x)"
- and b: "Ex P"
- shows "Ex Q"
- using a b by metis
-
-lemma ball_reg:
- assumes a: "!x :: 'a. (R x --> P x --> Q x)"
- and b: "Ball R P"
- shows "Ball R Q"
- using a b by (metis COMBC_def Collect_def Collect_mem_eq)
-
-lemma bex_reg:
- assumes a: "!x :: 'a. (R x --> P x --> Q x)"
- and b: "Bex R P"
- shows "Bex R Q"
- using a b by (metis COMBC_def Collect_def Collect_mem_eq)
-
-lemma ball_all_comm:
- assumes "\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)"
- shows "(\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y)"
- using assms by auto
-
-lemma bex_ex_comm:
- assumes "(\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)"
- shows "(\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y)"
- using assms by auto
-
-section {* Bounded abstraction *}
-
-definition
- Babs :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
-where
- "x \<in> p \<Longrightarrow> Babs p m x = m x"
-
-lemma babs_rsp:
- assumes q: "Quotient R1 Abs1 Rep1"
- and a: "(R1 ===> R2) f g"
- shows "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)"
- apply (auto simp add: Babs_def in_respects)
- apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
- using a apply (simp add: Babs_def)
- apply (simp add: in_respects)
- using Quotient_rel[OF q]
- by metis
-
-lemma babs_prs:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- shows "((Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f))) = f"
- apply (rule ext)
- apply (simp)
- apply (subgoal_tac "Rep1 x \<in> Respects R1")
- apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
- apply (simp add: in_respects Quotient_rel_rep[OF q1])
- done
-
-lemma babs_simp:
- assumes q: "Quotient R1 Abs Rep"
- shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)"
- apply(rule iffI)
- apply(simp_all only: babs_rsp[OF q])
- apply(auto simp add: Babs_def)
- apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
- apply(metis Babs_def)
- apply (simp add: in_respects)
- using Quotient_rel[OF q]
- by metis
-
-(* If a user proves that a particular functional relation
- is an equivalence this may be useful in regularising *)
-lemma babs_reg_eqv:
- shows "equivp R \<Longrightarrow> Babs (Respects R) P = P"
- by (simp add: expand_fun_eq Babs_def in_respects equivp_reflp)
-
-
-(* 3 lemmas needed for proving repabs_inj *)
-lemma ball_rsp:
- assumes a: "(R ===> (op =)) f g"
- shows "Ball (Respects R) f = Ball (Respects R) g"
- using a by (simp add: Ball_def in_respects)
-
-lemma bex_rsp:
- assumes a: "(R ===> (op =)) f g"
- shows "(Bex (Respects R) f = Bex (Respects R) g)"
- using a by (simp add: Bex_def in_respects)
-
-lemma bex1_rsp:
- assumes a: "(R ===> (op =)) f g"
- shows "Ex1 (\<lambda>x. x \<in> Respects R \<and> f x) = Ex1 (\<lambda>x. x \<in> Respects R \<and> g x)"
- using a
- by (simp add: Ex1_def in_respects) auto
-
-(* 2 lemmas needed for cleaning of quantifiers *)
-lemma all_prs:
- assumes a: "Quotient R absf repf"
- shows "Ball (Respects R) ((absf ---> id) f) = All f"
- using a unfolding Quotient_def Ball_def in_respects fun_map_def id_apply
- by metis
-
-lemma ex_prs:
- assumes a: "Quotient R absf repf"
- shows "Bex (Respects R) ((absf ---> id) f) = Ex f"
- using a unfolding Quotient_def Bex_def in_respects fun_map_def id_apply
- by metis
-
-section {* Bex1_rel quantifier *}
-
-definition
- Bex1_rel :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
-where
- "Bex1_rel R P \<longleftrightarrow> (\<exists>x \<in> Respects R. P x) \<and> (\<forall>x \<in> Respects R. \<forall>y \<in> Respects R. ((P x \<and> P y) \<longrightarrow> (R x y)))"
-
-lemma bex1_rel_aux:
- "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R x\<rbrakk> \<Longrightarrow> Bex1_rel R y"
- unfolding Bex1_rel_def
- apply (erule conjE)+
- apply (erule bexE)
- apply rule
- apply (rule_tac x="xa" in bexI)
- apply metis
- apply metis
- apply rule+
- apply (erule_tac x="xaa" in ballE)
- prefer 2
- apply (metis)
- apply (erule_tac x="ya" in ballE)
- prefer 2
- apply (metis)
- apply (metis in_respects)
- done
-
-lemma bex1_rel_aux2:
- "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R y\<rbrakk> \<Longrightarrow> Bex1_rel R x"
- unfolding Bex1_rel_def
- apply (erule conjE)+
- apply (erule bexE)
- apply rule
- apply (rule_tac x="xa" in bexI)
- apply metis
- apply metis
- apply rule+
- apply (erule_tac x="xaa" in ballE)
- prefer 2
- apply (metis)
- apply (erule_tac x="ya" in ballE)
- prefer 2
- apply (metis)
- apply (metis in_respects)
- done
-
-lemma bex1_rel_rsp:
- assumes a: "Quotient R absf repf"
- shows "((R ===> op =) ===> op =) (Bex1_rel R) (Bex1_rel R)"
- apply simp
- apply clarify
- apply rule
- apply (simp_all add: bex1_rel_aux bex1_rel_aux2)
- apply (erule bex1_rel_aux2)
- apply assumption
- done
-
-
-lemma ex1_prs:
- assumes a: "Quotient R absf repf"
- shows "((absf ---> id) ---> id) (Bex1_rel R) f = Ex1 f"
-apply simp
-apply (subst Bex1_rel_def)
-apply (subst Bex_def)
-apply (subst Ex1_def)
-apply simp
-apply rule
- apply (erule conjE)+
- apply (erule_tac exE)
- apply (erule conjE)
- apply (subgoal_tac "\<forall>y. R y y \<longrightarrow> f (absf y) \<longrightarrow> R x y")
- apply (rule_tac x="absf x" in exI)
- apply (simp)
- apply rule+
- using a unfolding Quotient_def
- apply metis
- apply rule+
- apply (erule_tac x="x" in ballE)
- apply (erule_tac x="y" in ballE)
- apply simp
- apply (simp add: in_respects)
- apply (simp add: in_respects)
-apply (erule_tac exE)
- apply rule
- apply (rule_tac x="repf x" in exI)
- apply (simp only: in_respects)
- apply rule
- apply (metis Quotient_rel_rep[OF a])
-using a unfolding Quotient_def apply (simp)
-apply rule+
-using a unfolding Quotient_def in_respects
-apply metis
-done
-
-lemma bex1_bexeq_reg: "(\<exists>!x\<in>Respects R. P x) \<longrightarrow> (Bex1_rel R (\<lambda>x. P x))"
- apply (simp add: Ex1_def Bex1_rel_def in_respects)
- apply clarify
- apply auto
- apply (rule bexI)
- apply assumption
- apply (simp add: in_respects)
- apply (simp add: in_respects)
- apply auto
- done
-
-section {* Various respects and preserve lemmas *}
-
-lemma quot_rel_rsp:
- assumes a: "Quotient R Abs Rep"
- shows "(R ===> R ===> op =) R R"
- apply(rule fun_rel_id)+
- apply(rule equals_rsp[OF a])
- apply(assumption)+
- done
-
-lemma o_prs:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- and q3: "Quotient R3 Abs3 Rep3"
- shows "(Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g)) = f o g"
- using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3]
- unfolding o_def expand_fun_eq by simp
-
-lemma o_rsp:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- and q3: "Quotient R3 Abs3 Rep3"
- and a1: "(R2 ===> R3) f1 f2"
- and a2: "(R1 ===> R2) g1 g2"
- shows "(R1 ===> R3) (f1 o g1) (f2 o g2)"
- using a1 a2 unfolding o_def expand_fun_eq
- by (auto)
-
-lemma cond_prs:
- assumes a: "Quotient R absf repf"
- shows "absf (if a then repf b else repf c) = (if a then b else c)"
- using a unfolding Quotient_def by auto
-
-lemma if_prs:
- assumes q: "Quotient R Abs Rep"
- shows "Abs (If a (Rep b) (Rep c)) = If a b c"
- using Quotient_abs_rep[OF q] by auto
-
-(* q not used *)
-lemma if_rsp:
- assumes q: "Quotient R Abs Rep"
- and a: "a1 = a2" "R b1 b2" "R c1 c2"
- shows "R (If a1 b1 c1) (If a2 b2 c2)"
- using a by auto
-
-lemma let_prs:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- shows "Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f)) = Let x f"
- using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto
-
-lemma let_rsp:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and a1: "(R1 ===> R2) f g"
- and a2: "R1 x y"
- shows "R2 ((Let x f)::'c) ((Let y g)::'c)"
- using apply_rsp[OF q1 a1] a2 by auto
-
-locale quot_type =
- fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
- and Abs :: "('a \<Rightarrow> bool) \<Rightarrow> 'b"
- and Rep :: "'b \<Rightarrow> ('a \<Rightarrow> bool)"
- assumes equivp: "equivp R"
- and rep_prop: "\<And>y. \<exists>x. Rep y = R x"
- and rep_inverse: "\<And>x. Abs (Rep x) = x"
- and abs_inverse: "\<And>x. (Rep (Abs (R x))) = (R x)"
- and rep_inject: "\<And>x y. (Rep x = Rep y) = (x = y)"
-begin
-
-definition
- abs::"'a \<Rightarrow> 'b"
-where
- "abs x \<equiv> Abs (R x)"
-
-definition
- rep::"'b \<Rightarrow> 'a"
-where
- "rep a = Eps (Rep a)"
-
-lemma homeier_lem9:
- shows "R (Eps (R x)) = R x"
-proof -
- have a: "R x x" using equivp by (simp add: equivp_reflp_symp_transp reflp_def)
- then have "R x (Eps (R x))" by (rule someI)
- then show "R (Eps (R x)) = R x"
- using equivp unfolding equivp_def by simp
-qed
-
-theorem homeier_thm10:
- shows "abs (rep a) = a"
- unfolding abs_def rep_def
-proof -
- from rep_prop
- obtain x where eq: "Rep a = R x" by auto
- have "Abs (R (Eps (Rep a))) = Abs (R (Eps (R x)))" using eq by simp
- also have "\<dots> = Abs (R x)" using homeier_lem9 by simp
- also have "\<dots> = Abs (Rep a)" using eq by simp
- also have "\<dots> = a" using rep_inverse by simp
- finally
- show "Abs (R (Eps (Rep a))) = a" by simp
-qed
-
-lemma homeier_lem7:
- shows "(R x = R y) = (Abs (R x) = Abs (R y))" (is "?LHS = ?RHS")
-proof -
- have "?RHS = (Rep (Abs (R x)) = Rep (Abs (R y)))" by (simp add: rep_inject)
- also have "\<dots> = ?LHS" by (simp add: abs_inverse)
- finally show "?LHS = ?RHS" by simp
-qed
-
-theorem homeier_thm11:
- shows "R r r' = (abs r = abs r')"
- unfolding abs_def
- by (simp only: equivp[simplified equivp_def] homeier_lem7)
-
-lemma rep_refl:
- shows "R (rep a) (rep a)"
- unfolding rep_def
- by (simp add: equivp[simplified equivp_def])
-
-
-lemma rep_abs_rsp:
- shows "R f (rep (abs g)) = R f g"
- and "R (rep (abs g)) f = R g f"
- by (simp_all add: homeier_thm10 homeier_thm11)
-
-lemma Quotient:
- shows "Quotient R abs rep"
- unfolding Quotient_def
- apply(simp add: homeier_thm10)
- apply(simp add: rep_refl)
- apply(subst homeier_thm11[symmetric])
- apply(simp add: equivp[simplified equivp_def])
- done
-
-end
-
-section {* ML setup *}
-
-text {* Auxiliary data for the quotient package *}
-
-use "quotient_info.ML"
-
-declare [[map "fun" = (fun_map, fun_rel)]]
-
-lemmas [quot_thm] = fun_quotient
-lemmas [quot_respect] = quot_rel_rsp
-lemmas [quot_equiv] = identity_equivp
-
-
-text {* Lemmas about simplifying id's. *}
-lemmas [id_simps] =
- id_def[symmetric]
- fun_map_id
- id_apply
- id_o
- o_id
- eq_comp_r
-
-text {* Translation functions for the lifting process. *}
-use "quotient_term.ML"
-
-
-text {* Definitions of the quotient types. *}
-use "quotient_typ.ML"
-
-
-text {* Definitions for quotient constants. *}
-use "quotient_def.ML"
-
-
-text {*
- An auxiliary constant for recording some information
- about the lifted theorem in a tactic.
-*}
-definition
- "Quot_True x \<equiv> True"
-
-lemma
- shows QT_all: "Quot_True (All P) \<Longrightarrow> Quot_True P"
- and QT_ex: "Quot_True (Ex P) \<Longrightarrow> Quot_True P"
- and QT_ex1: "Quot_True (Ex1 P) \<Longrightarrow> Quot_True P"
- and QT_lam: "Quot_True (\<lambda>x. P x) \<Longrightarrow> (\<And>x. Quot_True (P x))"
- and QT_ext: "(\<And>x. Quot_True (a x) \<Longrightarrow> f x = g x) \<Longrightarrow> (Quot_True a \<Longrightarrow> f = g)"
- by (simp_all add: Quot_True_def ext)
-
-lemma QT_imp: "Quot_True a \<equiv> Quot_True b"
- by (simp add: Quot_True_def)
-
-
-text {* Tactics for proving the lifted theorems *}
-use "quotient_tacs.ML"
-
-section {* Methods / Interface *}
-
-(* TODO inline *)
-ML {*
-fun mk_method1 tac thms ctxt =
- SIMPLE_METHOD (HEADGOAL (tac ctxt thms))
-
-fun mk_method2 tac ctxt =
- SIMPLE_METHOD (HEADGOAL (tac ctxt))
-*}
-
-method_setup lifting =
- {* Attrib.thms >> (mk_method1 Quotient_Tacs.lift_tac) *}
- {* lifts theorems to quotient types *}
-
-method_setup lifting_setup =
- {* Attrib.thm >> (mk_method1 Quotient_Tacs.procedure_tac) *}
- {* sets up the three goals for the quotient lifting procedure *}
-
-method_setup regularize =
- {* Scan.succeed (mk_method2 Quotient_Tacs.regularize_tac) *}
- {* proves the regularization goals from the quotient lifting procedure *}
-
-method_setup injection =
- {* Scan.succeed (mk_method2 Quotient_Tacs.all_injection_tac) *}
- {* proves the rep/abs injection goals from the quotient lifting procedure *}
-
-method_setup cleaning =
- {* Scan.succeed (mk_method2 Quotient_Tacs.clean_tac) *}
- {* proves the cleaning goals from the quotient lifting procedure *}
-
-attribute_setup quot_lifted =
- {* Scan.succeed Quotient_Tacs.lifted_attrib *}
- {* lifts theorems to quotient types *}
-
-end
-