--- a/Quot/Examples/IntEx2.thy Thu Feb 11 09:23:59 2010 +0100
+++ b/Quot/Examples/IntEx2.thy Thu Feb 11 10:06:02 2010 +0100
@@ -1,5 +1,5 @@
theory IntEx2
-imports "../QuotMain" "../QuotProd" Nat
+imports "../Quotient" "../Quotient_Product" Nat
(*uses
("Tools/numeral.ML")
("Tools/numeral_syntax.ML")
@@ -271,7 +271,7 @@
by (cases i, cases j, cases k) (simp)
-instance int :: pordered_cancel_ab_semigroup_add
+instance int :: ordered_cancel_ab_semigroup_add
proof
fix i j k :: int
show "i \<le> j \<Longrightarrow> k + i \<le> k + j"
@@ -318,7 +318,7 @@
done
text{*The integers form an ordered integral domain*}
-instance int :: ordered_idom
+instance int :: linordered_idom
proof
fix i j k :: int
show "i < j \<Longrightarrow> 0 < k \<Longrightarrow> k * i < k * j"
@@ -329,11 +329,11 @@
by (simp only: zsgn_def)
qed
-instance int :: lordered_ring
+instance int :: linordered_ring
proof
- fix k :: int
+(* fix k :: int
show "abs k = sup k (- k)"
- by (auto simp add: sup_int_def zabs_def less_minus_self_iff [symmetric])
+ by (auto simp add: sup_int_def zabs_def less_minus_self_iff [symmetric])*)
qed
lemmas int_distrib =