--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/nominal_function_core.ML Mon Jan 17 14:37:18 2011 +0100
@@ -0,0 +1,1067 @@
+(* Nominal Function Core
+ Author: Christian Urban
+
+ heavily based on the code of Alexander Krauss
+ (code forked on 14 January 2011)
+
+Core of the nominal function package.
+*)
+
+signature NOMINAL_FUNCTION_CORE =
+sig
+ val trace: bool Unsynchronized.ref
+
+ val prepare_nominal_function : Function_Common.function_config
+ -> string (* defname *)
+ -> ((bstring * typ) * mixfix) list (* defined symbol *)
+ -> ((bstring * typ) list * term list * term * term) list (* specification *)
+ -> local_theory
+ -> (term (* f *)
+ * thm (* goalstate *)
+ * (thm -> Function_Common.function_result) (* continuation *)
+ ) * local_theory
+
+end
+
+structure Nominal_Function_Core : NOMINAL_FUNCTION_CORE =
+struct
+
+val trace = Unsynchronized.ref false
+fun trace_msg msg = if ! trace then tracing (msg ()) else ()
+
+val boolT = HOLogic.boolT
+val mk_eq = HOLogic.mk_eq
+
+open Function_Lib
+open Function_Common
+
+datatype globals = Globals of
+ {fvar: term,
+ domT: typ,
+ ranT: typ,
+ h: term,
+ y: term,
+ x: term,
+ z: term,
+ a: term,
+ P: term,
+ D: term,
+ Pbool:term}
+
+datatype rec_call_info = RCInfo of
+ {RIvs: (string * typ) list, (* Call context: fixes and assumes *)
+ CCas: thm list,
+ rcarg: term, (* The recursive argument *)
+ llRI: thm,
+ h_assum: term}
+
+
+datatype clause_context = ClauseContext of
+ {ctxt : Proof.context,
+ qs : term list,
+ gs : term list,
+ lhs: term,
+ rhs: term,
+ cqs: cterm list,
+ ags: thm list,
+ case_hyp : thm}
+
+
+fun transfer_clause_ctx thy (ClauseContext { ctxt, qs, gs, lhs, rhs, cqs, ags, case_hyp }) =
+ ClauseContext { ctxt = ProofContext.transfer thy ctxt,
+ qs = qs, gs = gs, lhs = lhs, rhs = rhs, cqs = cqs, ags = ags, case_hyp = case_hyp }
+
+
+datatype clause_info = ClauseInfo of
+ {no: int,
+ qglr : ((string * typ) list * term list * term * term),
+ cdata : clause_context,
+ tree: Function_Ctx_Tree.ctx_tree,
+ lGI: thm,
+ RCs: rec_call_info list}
+
+
+(* Theory dependencies. *)
+val acc_induct_rule = @{thm accp_induct_rule}
+
+val ex1_implies_ex = @{thm FunDef.fundef_ex1_existence}
+val ex1_implies_un = @{thm FunDef.fundef_ex1_uniqueness}
+val ex1_implies_iff = @{thm FunDef.fundef_ex1_iff}
+
+val acc_downward = @{thm accp_downward}
+val accI = @{thm accp.accI}
+val case_split = @{thm HOL.case_split}
+val fundef_default_value = @{thm FunDef.fundef_default_value}
+val not_acc_down = @{thm not_accp_down}
+
+
+
+fun find_calls tree =
+ let
+ fun add_Ri (fixes,assumes) (_ $ arg) _ (_, xs) =
+ ([], (fixes, assumes, arg) :: xs)
+ | add_Ri _ _ _ _ = raise Match
+ in
+ rev (Function_Ctx_Tree.traverse_tree add_Ri tree [])
+ end
+
+(* nominal *)
+fun mk_eqvt_at (f_trm, arg_trm) =
+ let
+ val f_ty = fastype_of f_trm
+ val arg_ty = domain_type f_ty
+ in
+ Const (@{const_name eqvt_at}, [f_ty, arg_ty] ---> @{typ bool}) $ f_trm $ arg_trm
+ |> HOLogic.mk_Trueprop
+ end
+
+(* nominal *)
+fun find_calls2 f t =
+ let
+ fun aux (g $ arg) = aux g #> aux arg #> (if f = g then cons ((g, arg)) else I)
+ | aux (Abs (_, _, t)) = aux t
+ | aux _ = I
+ in
+ aux t []
+ end
+
+
+
+(** building proof obligations *)
+
+fun mk_compat_proof_obligations domT ranT fvar f glrs =
+ let
+ fun mk_impl ((qs, gs, lhs, rhs), (qs', gs', lhs', rhs')) =
+ let
+ val shift = incr_boundvars (length qs')
+
+ val RCs_rhs = find_calls2 fvar rhs (* nominal : FIXME : recursive calls should be passed here *)
+ in
+ Logic.mk_implies
+ (HOLogic.mk_Trueprop (HOLogic.eq_const domT $ shift lhs $ lhs'),
+ HOLogic.mk_Trueprop (HOLogic.eq_const ranT $ shift rhs $ rhs'))
+ |> fold_rev (curry Logic.mk_implies) (map shift gs @ gs')
+ |> fold_rev (curry Logic.mk_implies) (map (shift o mk_eqvt_at) RCs_rhs) (* nominal *)
+ |> fold_rev (fn (n,T) => fn b => Term.all T $ Abs(n,T,b)) (qs @ qs')
+ |> curry abstract_over fvar
+ |> curry subst_bound f
+ end
+ in
+ map mk_impl (unordered_pairs glrs)
+ end
+
+
+fun mk_completeness (Globals {x, Pbool, ...}) clauses qglrs =
+ let
+ fun mk_case (ClauseContext {qs, gs, lhs, ...}, (oqs, _, _, _)) =
+ HOLogic.mk_Trueprop Pbool
+ |> curry Logic.mk_implies (HOLogic.mk_Trueprop (mk_eq (x, lhs)))
+ |> fold_rev (curry Logic.mk_implies) gs
+ |> fold_rev mk_forall_rename (map fst oqs ~~ qs)
+ in
+ HOLogic.mk_Trueprop Pbool
+ |> fold_rev (curry Logic.mk_implies o mk_case) (clauses ~~ qglrs)
+ |> mk_forall_rename ("x", x)
+ |> mk_forall_rename ("P", Pbool)
+ end
+
+(** making a context with it's own local bindings **)
+
+fun mk_clause_context x ctxt (pre_qs,pre_gs,pre_lhs,pre_rhs) =
+ let
+ val (qs, ctxt') = Variable.variant_fixes (map fst pre_qs) ctxt
+ |>> map2 (fn (_, T) => fn n => Free (n, T)) pre_qs
+
+ val thy = ProofContext.theory_of ctxt'
+
+ fun inst t = subst_bounds (rev qs, t)
+ val gs = map inst pre_gs
+ val lhs = inst pre_lhs
+ val rhs = inst pre_rhs
+
+ val cqs = map (cterm_of thy) qs
+ val ags = map (Thm.assume o cterm_of thy) gs
+
+ val case_hyp = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (mk_eq (x, lhs))))
+ in
+ ClauseContext { ctxt = ctxt', qs = qs, gs = gs, lhs = lhs, rhs = rhs,
+ cqs = cqs, ags = ags, case_hyp = case_hyp }
+ end
+
+
+(* lowlevel term function. FIXME: remove *)
+fun abstract_over_list vs body =
+ let
+ fun abs lev v tm =
+ if v aconv tm then Bound lev
+ else
+ (case tm of
+ Abs (a, T, t) => Abs (a, T, abs (lev + 1) v t)
+ | t $ u => abs lev v t $ abs lev v u
+ | t => t)
+ in
+ fold_index (fn (i, v) => fn t => abs i v t) vs body
+ end
+
+
+
+fun mk_clause_info globals G f no cdata qglr tree RCs GIntro_thm RIntro_thms =
+ let
+ val Globals {h, ...} = globals
+
+ val ClauseContext { ctxt, qs, cqs, ags, ... } = cdata
+ val cert = Thm.cterm_of (ProofContext.theory_of ctxt)
+
+ (* Instantiate the GIntro thm with "f" and import into the clause context. *)
+ val lGI = GIntro_thm
+ |> Thm.forall_elim (cert f)
+ |> fold Thm.forall_elim cqs
+ |> fold Thm.elim_implies ags
+
+ fun mk_call_info (rcfix, rcassm, rcarg) RI =
+ let
+ val llRI = RI
+ |> fold Thm.forall_elim cqs
+ |> fold (Thm.forall_elim o cert o Free) rcfix
+ |> fold Thm.elim_implies ags
+ |> fold Thm.elim_implies rcassm
+
+ val h_assum =
+ HOLogic.mk_Trueprop (G $ rcarg $ (h $ rcarg))
+ |> fold_rev (curry Logic.mk_implies o prop_of) rcassm
+ |> fold_rev (Logic.all o Free) rcfix
+ |> Pattern.rewrite_term (ProofContext.theory_of ctxt) [(f, h)] []
+ |> abstract_over_list (rev qs)
+ in
+ RCInfo {RIvs=rcfix, rcarg=rcarg, CCas=rcassm, llRI=llRI, h_assum=h_assum}
+ end
+
+ val RC_infos = map2 mk_call_info RCs RIntro_thms
+ in
+ ClauseInfo {no=no, cdata=cdata, qglr=qglr, lGI=lGI, RCs=RC_infos,
+ tree=tree}
+ end
+
+
+fun store_compat_thms 0 thms = []
+ | store_compat_thms n thms =
+ let
+ val (thms1, thms2) = chop n thms
+ in
+ (thms1 :: store_compat_thms (n - 1) thms2)
+ end
+
+(* expects i <= j *)
+fun lookup_compat_thm i j cts =
+ nth (nth cts (i - 1)) (j - i)
+
+(* nominal *)
+(* Returns "Gsi, Gsj, lhs_i = lhs_j |-- rhs_j_f = rhs_i_f" *)
+(* if j < i, then turn around *)
+fun get_compat_thm thy cts eqvtsi eqvtsj i j ctxi ctxj =
+ let
+ val ClauseContext {cqs=cqsi,ags=agsi,lhs=lhsi,...} = ctxi
+ val ClauseContext {cqs=cqsj,ags=agsj,lhs=lhsj,...} = ctxj
+
+ val lhsi_eq_lhsj = cterm_of thy (HOLogic.mk_Trueprop (mk_eq (lhsi, lhsj)))
+ in if j < i then
+ let
+ val compat = lookup_compat_thm j i cts
+ in
+ compat (* "!!qj qi. Gsj => Gsi => lhsj = lhsi ==> rhsj = rhsi" *)
+ |> fold Thm.forall_elim (cqsj @ cqsi) (* "Gsj => Gsi => lhsj = lhsi ==> rhsj = rhsi" *)
+ |> fold Thm.elim_implies (rev eqvtsj) (* nominal *)
+ |> fold Thm.elim_implies agsj
+ |> fold Thm.elim_implies agsi
+ |> Thm.elim_implies ((Thm.assume lhsi_eq_lhsj) RS sym) (* "Gsj, Gsi, lhsi = lhsj |-- rhsj = rhsi" *)
+ end
+ else
+ let
+ val compat = lookup_compat_thm i j cts
+ in
+ compat (* "!!qi qj. Gsi => Gsj => lhsi = lhsj ==> rhsi = rhsj" *)
+ |> fold Thm.forall_elim (cqsi @ cqsj) (* "Gsi => Gsj => lhsi = lhsj ==> rhsi = rhsj" *)
+ |> fold Thm.elim_implies (rev eqvtsi) (* nominal *)
+ |> fold Thm.elim_implies agsi
+ |> fold Thm.elim_implies agsj
+ |> Thm.elim_implies (Thm.assume lhsi_eq_lhsj)
+ |> (fn thm => thm RS sym) (* "Gsi, Gsj, lhsi = lhsj |-- rhsj = rhsi" *)
+ end
+ end
+
+
+(* Generates the replacement lemma in fully quantified form. *)
+fun mk_replacement_lemma thy h ih_elim clause =
+ let
+ val ClauseInfo {cdata=ClauseContext {qs, lhs, cqs, ags, case_hyp, ...},
+ RCs, tree, ...} = clause
+ local open Conv in
+ val ih_conv = arg1_conv o arg_conv o arg_conv
+ end
+
+ val ih_elim_case =
+ Conv.fconv_rule (ih_conv (K (case_hyp RS eq_reflection))) ih_elim
+
+ val Ris = map (fn RCInfo {llRI, ...} => llRI) RCs
+ val h_assums = map (fn RCInfo {h_assum, ...} =>
+ Thm.assume (cterm_of thy (subst_bounds (rev qs, h_assum)))) RCs
+
+ val (eql, _) =
+ Function_Ctx_Tree.rewrite_by_tree thy h ih_elim_case (Ris ~~ h_assums) tree
+
+ val replace_lemma = (eql RS meta_eq_to_obj_eq)
+ |> Thm.implies_intr (cprop_of case_hyp)
+ |> fold_rev (Thm.implies_intr o cprop_of) h_assums
+ |> fold_rev (Thm.implies_intr o cprop_of) ags
+ |> fold_rev Thm.forall_intr cqs
+ |> Thm.close_derivation
+ in
+ replace_lemma
+ end
+
+(* nominal *)
+(* Generates the eqvt lemmas for each clause *)
+fun mk_eqvt_lemma thy ih_eqvt clause =
+ let
+ val ClauseInfo {cdata=ClauseContext {cqs, ags, case_hyp, ...}, RCs, ...} = clause
+
+ local open Conv in
+ val ih_conv = arg1_conv o arg_conv o arg_conv
+ end
+
+ val ih_eqvt_case =
+ Conv.fconv_rule (ih_conv (K (case_hyp RS eq_reflection))) ih_eqvt
+
+ fun prep_eqvt (RCInfo {llRI, RIvs, CCas, ...}) =
+ (llRI RS ih_eqvt_case)
+ |> fold_rev (Thm.implies_intr o cprop_of) CCas
+ |> fold_rev (Thm.forall_intr o cterm_of thy o Free) RIvs
+ in
+ map prep_eqvt RCs
+ |> map (fold_rev (Thm.implies_intr o cprop_of) ags)
+ |> map (Thm.implies_intr (cprop_of case_hyp))
+ |> map (fold_rev Thm.forall_intr cqs)
+ |> map (Thm.close_derivation)
+ end
+
+(* nominal *)
+fun mk_uniqueness_clause thy globals compat_store eqvts clausei clausej RLj =
+ let
+ val Globals {h, y, x, fvar, ...} = globals
+ val ClauseInfo {no=i, cdata=cctxi as ClauseContext {ctxt=ctxti, lhs=lhsi, case_hyp, cqs = cqsi,
+ ags = agsi, ...}, ...} = clausei
+ val ClauseInfo {no=j, qglr=cdescj, RCs=RCsj, ...} = clausej
+
+ val cctxj as ClauseContext {ags = agsj', lhs = lhsj', rhs = rhsj', qs = qsj', cqs = cqsj', ...} =
+ mk_clause_context x ctxti cdescj
+
+ val rhsj'h = Pattern.rewrite_term thy [(fvar,h)] [] rhsj'
+
+ val Ghsj' = map
+ (fn RCInfo {h_assum, ...} => Thm.assume (cterm_of thy (subst_bounds (rev qsj', h_assum)))) RCsj
+
+ val y_eq_rhsj'h = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (mk_eq (y, rhsj'h))))
+ val lhsi_eq_lhsj' = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (mk_eq (lhsi, lhsj'))))
+ (* lhs_i = lhs_j' |-- lhs_i = lhs_j' *)
+
+ val case_hypj' = trans OF [case_hyp, lhsi_eq_lhsj']
+
+ val RLj_import = RLj
+ |> fold Thm.forall_elim cqsj'
+ |> fold Thm.elim_implies agsj'
+ |> fold Thm.elim_implies Ghsj'
+
+ val eqvtsi = nth eqvts (i - 1)
+ |> map (fold Thm.forall_elim cqsi)
+ |> map (fold Thm.elim_implies [case_hyp])
+ |> map (fold Thm.elim_implies agsi)
+
+ val eqvtsj = nth eqvts (j - 1)
+ |> map (fold Thm.forall_elim cqsj')
+ |> map (fold Thm.elim_implies [case_hypj'])
+ |> map (fold Thm.elim_implies agsj')
+
+ val compat = get_compat_thm thy compat_store eqvtsi eqvtsj i j cctxi cctxj
+
+ in
+ (trans OF [case_hyp, lhsi_eq_lhsj']) (* lhs_i = lhs_j' |-- x = lhs_j' *)
+ |> Thm.implies_elim RLj_import
+ (* Rj1' ... Rjk', lhs_i = lhs_j' |-- rhs_j'_h = rhs_j'_f *)
+ |> (fn it => trans OF [it, compat])
+ (* lhs_i = lhs_j', Gj', Rj1' ... Rjk' |-- rhs_j'_h = rhs_i_f *)
+ |> (fn it => trans OF [y_eq_rhsj'h, it])
+ (* lhs_i = lhs_j', Gj', Rj1' ... Rjk', y = rhs_j_h' |-- y = rhs_i_f *)
+ |> fold_rev (Thm.implies_intr o cprop_of) Ghsj'
+ |> fold_rev (Thm.implies_intr o cprop_of) agsj'
+ (* lhs_i = lhs_j' , y = rhs_j_h' |-- Gj', Rj1'...Rjk' ==> y = rhs_i_f *)
+ |> Thm.implies_intr (cprop_of y_eq_rhsj'h)
+ |> Thm.implies_intr (cprop_of lhsi_eq_lhsj')
+ |> fold_rev Thm.forall_intr (cterm_of thy h :: cqsj')
+ end
+
+(* nominal *)
+fun mk_uniqueness_case thy globals G f ihyp ih_intro G_cases compat_store clauses replems eqvtlems clausei =
+ let
+ val Globals {x, y, ranT, fvar, ...} = globals
+ val ClauseInfo {cdata = ClauseContext {lhs, rhs, cqs, ags, case_hyp, ...}, lGI, RCs, ...} = clausei
+ val rhsC = Pattern.rewrite_term thy [(fvar, f)] [] rhs
+
+ val ih_intro_case = full_simplify (HOL_basic_ss addsimps [case_hyp]) ih_intro
+
+ fun prep_RC (RCInfo {llRI, RIvs, CCas, ...}) =
+ (llRI RS ih_intro_case)
+ |> fold_rev (Thm.implies_intr o cprop_of) CCas
+ |> fold_rev (Thm.forall_intr o cterm_of thy o Free) RIvs
+
+ val existence = fold (curry op COMP o prep_RC) RCs lGI
+
+ val P = cterm_of thy (mk_eq (y, rhsC))
+ val G_lhs_y = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (G $ lhs $ y)))
+
+ val unique_clauses =
+ map2 (mk_uniqueness_clause thy globals compat_store eqvtlems clausei) clauses replems
+
+ fun elim_implies_eta A AB =
+ Thm.compose_no_flatten true (A, 0) 1 AB |> Seq.list_of |> the_single
+
+ val uniqueness = G_cases
+ |> Thm.forall_elim (cterm_of thy lhs)
+ |> Thm.forall_elim (cterm_of thy y)
+ |> Thm.forall_elim P
+ |> Thm.elim_implies G_lhs_y
+ |> fold elim_implies_eta unique_clauses
+ |> Thm.implies_intr (cprop_of G_lhs_y)
+ |> Thm.forall_intr (cterm_of thy y)
+
+ val P2 = cterm_of thy (lambda y (G $ lhs $ y)) (* P2 y := (lhs, y): G *)
+
+ val exactly_one =
+ ex1I |> instantiate' [SOME (ctyp_of thy ranT)] [SOME P2, SOME (cterm_of thy rhsC)]
+ |> curry (op COMP) existence
+ |> curry (op COMP) uniqueness
+ |> simplify (HOL_basic_ss addsimps [case_hyp RS sym])
+ |> Thm.implies_intr (cprop_of case_hyp)
+ |> fold_rev (Thm.implies_intr o cprop_of) ags
+ |> fold_rev Thm.forall_intr cqs
+
+ val function_value =
+ existence
+ |> Thm.implies_intr ihyp
+ |> Thm.implies_intr (cprop_of case_hyp)
+ |> Thm.forall_intr (cterm_of thy x)
+ |> Thm.forall_elim (cterm_of thy lhs)
+ |> curry (op RS) refl
+ in
+ (exactly_one, function_value)
+ end
+
+
+(* nominal *)
+fun prove_stuff ctxt globals G f R clauses complete compat compat_store G_elim G_eqvt f_def =
+ let
+ val Globals {h, domT, ranT, x, ...} = globals
+ val thy = ProofContext.theory_of ctxt
+
+ (* Inductive Hypothesis: !!z. (z,x):R ==> EX!y. (z,y):G *)
+ val ihyp = Term.all domT $ Abs ("z", domT,
+ Logic.mk_implies (HOLogic.mk_Trueprop (R $ Bound 0 $ x),
+ HOLogic.mk_Trueprop (Const (@{const_name Ex1}, (ranT --> boolT) --> boolT) $
+ Abs ("y", ranT, G $ Bound 1 $ Bound 0))))
+ |> cterm_of thy
+
+ val ihyp_thm = Thm.assume ihyp |> Thm.forall_elim_vars 0
+ val ih_intro = ihyp_thm RS (f_def RS ex1_implies_ex)
+ val ih_elim = ihyp_thm RS (f_def RS ex1_implies_un)
+ |> instantiate' [] [NONE, SOME (cterm_of thy h)]
+ val ih_eqvt = ihyp_thm RS (G_eqvt RS (f_def RS @{thm fundef_ex1_eqvt_at}))
+
+ val _ = trace_msg (K "Proving Replacement lemmas...")
+ val repLemmas = map (mk_replacement_lemma thy h ih_elim) clauses
+
+ val _ = trace_msg (K "Proving Equivariance lemmas...")
+ val eqvtLemmas = map (mk_eqvt_lemma thy ih_eqvt) clauses
+
+ val _ = trace_msg (K "Proving cases for unique existence...")
+ val (ex1s, values) =
+ split_list (map (mk_uniqueness_case thy globals G f
+ ihyp ih_intro G_elim compat_store clauses repLemmas eqvtLemmas) clauses)
+
+ val _ = trace_msg (K "Proving: Graph is a function")
+ val graph_is_function = complete
+ |> Thm.forall_elim_vars 0
+ |> fold (curry op COMP) ex1s
+ |> Thm.implies_intr (ihyp)
+ |> Thm.implies_intr (cterm_of thy (HOLogic.mk_Trueprop (mk_acc domT R $ x)))
+ |> Thm.forall_intr (cterm_of thy x)
+ |> (fn it => Drule.compose_single (it, 2, acc_induct_rule)) (* "EX! y. (?x,y):G" *)
+ |> (fn it => fold (Thm.forall_intr o cterm_of thy o Var) (Term.add_vars (prop_of it) []) it)
+
+ val goalstate = Conjunction.intr graph_is_function complete
+ |> Thm.close_derivation
+ |> Goal.protect
+ |> fold_rev (Thm.implies_intr o cprop_of) compat
+ |> Thm.implies_intr (cprop_of complete)
+ in
+ (goalstate, values)
+ end
+
+(* nominal *)
+(* wrapper -- restores quantifiers in rule specifications *)
+fun inductive_def eqvt_flag (binding as ((R, T), _)) intrs lthy =
+ let
+ val ({intrs = intrs_gen, elims = [elim_gen], preds = [ Rdef ], induct, raw_induct, ...}, lthy) =
+ lthy
+ |> Local_Theory.conceal
+ |> Inductive.add_inductive_i
+ {quiet_mode = true,
+ verbose = ! trace,
+ alt_name = Binding.empty,
+ coind = false,
+ no_elim = false,
+ no_ind = false,
+ skip_mono = true,
+ fork_mono = false}
+ [binding] (* relation *)
+ [] (* no parameters *)
+ (map (fn t => (Attrib.empty_binding, t)) intrs) (* intro rules *)
+ [] (* no special monos *)
+ ||> Local_Theory.restore_naming lthy
+
+ val eqvt_thm' =
+ if eqvt_flag = false then NONE
+ else
+ let
+ val ([eqvt_thm], lthy) = Nominal_Eqvt.raw_equivariance false [Rdef] raw_induct intrs_gen lthy
+ in
+ SOME ((Nominal_ThmDecls.eqvt_transform lthy eqvt_thm) RS @{thm eqvtI})
+ end
+
+ val cert = cterm_of (ProofContext.theory_of lthy)
+ fun requantify orig_intro thm =
+ let
+ val (qs, t) = dest_all_all orig_intro
+ val frees = frees_in_term lthy t |> remove (op =) (Binding.name_of R, T)
+ val vars = Term.add_vars (prop_of thm) [] |> rev
+ val varmap = AList.lookup (op =) (frees ~~ map fst vars)
+ #> the_default ("",0)
+ in
+ fold_rev (fn Free (n, T) =>
+ forall_intr_rename (n, cert (Var (varmap (n, T), T)))) qs thm
+ end
+ in
+ ((Rdef, map2 requantify intrs intrs_gen, forall_intr_vars elim_gen, induct, eqvt_thm'), lthy)
+ end
+
+(* nominal *)
+fun define_graph Gname fvar domT ranT clauses RCss lthy =
+ let
+ val GT = domT --> ranT --> boolT
+ val (Gvar as (n, T)) = singleton (Variable.variant_frees lthy []) (Gname, GT)
+
+ fun mk_GIntro (ClauseContext {qs, gs, lhs, rhs, ...}) RCs =
+ let
+ fun mk_h_assm (rcfix, rcassm, rcarg) =
+ HOLogic.mk_Trueprop (Free Gvar $ rcarg $ (fvar $ rcarg))
+ |> fold_rev (curry Logic.mk_implies o prop_of) rcassm
+ |> fold_rev (Logic.all o Free) rcfix
+ in
+ HOLogic.mk_Trueprop (Free Gvar $ lhs $ rhs)
+ |> fold_rev (curry Logic.mk_implies o mk_h_assm) RCs
+ |> fold_rev (curry Logic.mk_implies) gs
+ |> fold_rev Logic.all (fvar :: qs)
+ end
+
+ val G_intros = map2 mk_GIntro clauses RCss
+ in
+ inductive_def true ((Binding.name n, T), NoSyn) G_intros lthy
+ end
+
+fun define_function fdefname (fname, mixfix) domT ranT G default lthy =
+ let
+ val f_def =
+ Abs ("x", domT, Const (@{const_name FunDef.THE_default}, ranT --> (ranT --> boolT) --> ranT)
+ $ (default $ Bound 0) $ Abs ("y", ranT, G $ Bound 1 $ Bound 0))
+ |> Syntax.check_term lthy
+ in
+ Local_Theory.define
+ ((Binding.name (function_name fname), mixfix),
+ ((Binding.conceal (Binding.name fdefname), []), f_def)) lthy
+ end
+
+(* nominal *)
+fun define_recursion_relation Rname domT qglrs clauses RCss lthy =
+ let
+ val RT = domT --> domT --> boolT
+ val (Rvar as (n, T)) = singleton (Variable.variant_frees lthy []) (Rname, RT)
+
+ fun mk_RIntro (ClauseContext {qs, gs, lhs, ...}, (oqs, _, _, _)) (rcfix, rcassm, rcarg) =
+ HOLogic.mk_Trueprop (Free Rvar $ rcarg $ lhs)
+ |> fold_rev (curry Logic.mk_implies o prop_of) rcassm
+ |> fold_rev (curry Logic.mk_implies) gs
+ |> fold_rev (Logic.all o Free) rcfix
+ |> fold_rev mk_forall_rename (map fst oqs ~~ qs)
+ (* "!!qs xs. CS ==> G => (r, lhs) : R" *)
+
+ val R_intross = map2 (map o mk_RIntro) (clauses ~~ qglrs) RCss
+
+ val ((R, RIntro_thms, R_elim, _, _), lthy) =
+ inductive_def false ((Binding.name n, T), NoSyn) (flat R_intross) lthy
+ in
+ ((R, Library.unflat R_intross RIntro_thms, R_elim), lthy)
+ end
+
+
+fun fix_globals domT ranT fvar ctxt =
+ let
+ val ([h, y, x, z, a, D, P, Pbool],ctxt') = Variable.variant_fixes
+ ["h_fd", "y_fd", "x_fd", "z_fd", "a_fd", "D_fd", "P_fd", "Pb_fd"] ctxt
+ in
+ (Globals {h = Free (h, domT --> ranT),
+ y = Free (y, ranT),
+ x = Free (x, domT),
+ z = Free (z, domT),
+ a = Free (a, domT),
+ D = Free (D, domT --> boolT),
+ P = Free (P, domT --> boolT),
+ Pbool = Free (Pbool, boolT),
+ fvar = fvar,
+ domT = domT,
+ ranT = ranT},
+ ctxt')
+ end
+
+fun inst_RC thy fvar f (rcfix, rcassm, rcarg) =
+ let
+ fun inst_term t = subst_bound(f, abstract_over (fvar, t))
+ in
+ (rcfix, map (Thm.assume o cterm_of thy o inst_term o prop_of) rcassm, inst_term rcarg)
+ end
+
+
+
+(**********************************************************
+ * PROVING THE RULES
+ **********************************************************)
+
+fun mk_psimps thy globals R clauses valthms f_iff graph_is_function =
+ let
+ val Globals {domT, z, ...} = globals
+
+ fun mk_psimp (ClauseInfo {qglr = (oqs, _, _, _), cdata = ClauseContext {cqs, lhs, ags, ...}, ...}) valthm =
+ let
+ val lhs_acc = cterm_of thy (HOLogic.mk_Trueprop (mk_acc domT R $ lhs)) (* "acc R lhs" *)
+ val z_smaller = cterm_of thy (HOLogic.mk_Trueprop (R $ z $ lhs)) (* "R z lhs" *)
+ in
+ ((Thm.assume z_smaller) RS ((Thm.assume lhs_acc) RS acc_downward))
+ |> (fn it => it COMP graph_is_function)
+ |> Thm.implies_intr z_smaller
+ |> Thm.forall_intr (cterm_of thy z)
+ |> (fn it => it COMP valthm)
+ |> Thm.implies_intr lhs_acc
+ |> asm_simplify (HOL_basic_ss addsimps [f_iff])
+ |> fold_rev (Thm.implies_intr o cprop_of) ags
+ |> fold_rev forall_intr_rename (map fst oqs ~~ cqs)
+ end
+ in
+ map2 mk_psimp clauses valthms
+ end
+
+
+(** Induction rule **)
+
+
+val acc_subset_induct = @{thm predicate1I} RS @{thm accp_subset_induct}
+
+
+fun mk_partial_induct_rule thy globals R complete_thm clauses =
+ let
+ val Globals {domT, x, z, a, P, D, ...} = globals
+ val acc_R = mk_acc domT R
+
+ val x_D = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (D $ x)))
+ val a_D = cterm_of thy (HOLogic.mk_Trueprop (D $ a))
+
+ val D_subset = cterm_of thy (Logic.all x
+ (Logic.mk_implies (HOLogic.mk_Trueprop (D $ x), HOLogic.mk_Trueprop (acc_R $ x))))
+
+ val D_dcl = (* "!!x z. [| x: D; (z,x):R |] ==> z:D" *)
+ Logic.all x (Logic.all z (Logic.mk_implies (HOLogic.mk_Trueprop (D $ x),
+ Logic.mk_implies (HOLogic.mk_Trueprop (R $ z $ x),
+ HOLogic.mk_Trueprop (D $ z)))))
+ |> cterm_of thy
+
+ (* Inductive Hypothesis: !!z. (z,x):R ==> P z *)
+ val ihyp = Term.all domT $ Abs ("z", domT,
+ Logic.mk_implies (HOLogic.mk_Trueprop (R $ Bound 0 $ x),
+ HOLogic.mk_Trueprop (P $ Bound 0)))
+ |> cterm_of thy
+
+ val aihyp = Thm.assume ihyp
+
+ fun prove_case clause =
+ let
+ val ClauseInfo {cdata = ClauseContext {ctxt, qs, cqs, ags, gs, lhs, case_hyp, ...},
+ RCs, qglr = (oqs, _, _, _), ...} = clause
+
+ val case_hyp_conv = K (case_hyp RS eq_reflection)
+ local open Conv in
+ val lhs_D = fconv_rule (arg_conv (arg_conv (case_hyp_conv))) x_D
+ val sih =
+ fconv_rule (Conv.binder_conv
+ (K (arg1_conv (arg_conv (arg_conv case_hyp_conv)))) ctxt) aihyp
+ end
+
+ fun mk_Prec (RCInfo {llRI, RIvs, CCas, rcarg, ...}) = sih
+ |> Thm.forall_elim (cterm_of thy rcarg)
+ |> Thm.elim_implies llRI
+ |> fold_rev (Thm.implies_intr o cprop_of) CCas
+ |> fold_rev (Thm.forall_intr o cterm_of thy o Free) RIvs
+
+ val P_recs = map mk_Prec RCs (* [P rec1, P rec2, ... ] *)
+
+ val step = HOLogic.mk_Trueprop (P $ lhs)
+ |> fold_rev (curry Logic.mk_implies o prop_of) P_recs
+ |> fold_rev (curry Logic.mk_implies) gs
+ |> curry Logic.mk_implies (HOLogic.mk_Trueprop (D $ lhs))
+ |> fold_rev mk_forall_rename (map fst oqs ~~ qs)
+ |> cterm_of thy
+
+ val P_lhs = Thm.assume step
+ |> fold Thm.forall_elim cqs
+ |> Thm.elim_implies lhs_D
+ |> fold Thm.elim_implies ags
+ |> fold Thm.elim_implies P_recs
+
+ val res = cterm_of thy (HOLogic.mk_Trueprop (P $ x))
+ |> Conv.arg_conv (Conv.arg_conv case_hyp_conv)
+ |> Thm.symmetric (* P lhs == P x *)
+ |> (fn eql => Thm.equal_elim eql P_lhs) (* "P x" *)
+ |> Thm.implies_intr (cprop_of case_hyp)
+ |> fold_rev (Thm.implies_intr o cprop_of) ags
+ |> fold_rev Thm.forall_intr cqs
+ in
+ (res, step)
+ end
+
+ val (cases, steps) = split_list (map prove_case clauses)
+
+ val istep = complete_thm
+ |> Thm.forall_elim_vars 0
+ |> fold (curry op COMP) cases (* P x *)
+ |> Thm.implies_intr ihyp
+ |> Thm.implies_intr (cprop_of x_D)
+ |> Thm.forall_intr (cterm_of thy x)
+
+ val subset_induct_rule =
+ acc_subset_induct
+ |> (curry op COMP) (Thm.assume D_subset)
+ |> (curry op COMP) (Thm.assume D_dcl)
+ |> (curry op COMP) (Thm.assume a_D)
+ |> (curry op COMP) istep
+ |> fold_rev Thm.implies_intr steps
+ |> Thm.implies_intr a_D
+ |> Thm.implies_intr D_dcl
+ |> Thm.implies_intr D_subset
+
+ val simple_induct_rule =
+ subset_induct_rule
+ |> Thm.forall_intr (cterm_of thy D)
+ |> Thm.forall_elim (cterm_of thy acc_R)
+ |> assume_tac 1 |> Seq.hd
+ |> (curry op COMP) (acc_downward
+ |> (instantiate' [SOME (ctyp_of thy domT)]
+ (map (SOME o cterm_of thy) [R, x, z]))
+ |> Thm.forall_intr (cterm_of thy z)
+ |> Thm.forall_intr (cterm_of thy x))
+ |> Thm.forall_intr (cterm_of thy a)
+ |> Thm.forall_intr (cterm_of thy P)
+ in
+ simple_induct_rule
+ end
+
+
+(* FIXME: broken by design *)
+fun mk_domain_intro ctxt (Globals {domT, ...}) R R_cases clause =
+ let
+ val thy = ProofContext.theory_of ctxt
+ val ClauseInfo {cdata = ClauseContext {gs, lhs, cqs, ...},
+ qglr = (oqs, _, _, _), ...} = clause
+ val goal = HOLogic.mk_Trueprop (mk_acc domT R $ lhs)
+ |> fold_rev (curry Logic.mk_implies) gs
+ |> cterm_of thy
+ in
+ Goal.init goal
+ |> (SINGLE (resolve_tac [accI] 1)) |> the
+ |> (SINGLE (eresolve_tac [Thm.forall_elim_vars 0 R_cases] 1)) |> the
+ |> (SINGLE (auto_tac (clasimpset_of ctxt))) |> the
+ |> Goal.conclude
+ |> fold_rev forall_intr_rename (map fst oqs ~~ cqs)
+ end
+
+
+
+(** Termination rule **)
+
+val wf_induct_rule = @{thm Wellfounded.wfP_induct_rule}
+val wf_in_rel = @{thm FunDef.wf_in_rel}
+val in_rel_def = @{thm FunDef.in_rel_def}
+
+fun mk_nest_term_case thy globals R' ihyp clause =
+ let
+ val Globals {z, ...} = globals
+ val ClauseInfo {cdata = ClauseContext {qs, cqs, ags, lhs, case_hyp, ...}, tree,
+ qglr=(oqs, _, _, _), ...} = clause
+
+ val ih_case = full_simplify (HOL_basic_ss addsimps [case_hyp]) ihyp
+
+ fun step (fixes, assumes) (_ $ arg) u (sub,(hyps,thms)) =
+ let
+ val used = (u @ sub)
+ |> map (fn (ctx,thm) => Function_Ctx_Tree.export_thm thy ctx thm)
+
+ val hyp = HOLogic.mk_Trueprop (R' $ arg $ lhs)
+ |> fold_rev (curry Logic.mk_implies o prop_of) used (* additional hyps *)
+ |> Function_Ctx_Tree.export_term (fixes, assumes)
+ |> fold_rev (curry Logic.mk_implies o prop_of) ags
+ |> fold_rev mk_forall_rename (map fst oqs ~~ qs)
+ |> cterm_of thy
+
+ val thm = Thm.assume hyp
+ |> fold Thm.forall_elim cqs
+ |> fold Thm.elim_implies ags
+ |> Function_Ctx_Tree.import_thm thy (fixes, assumes)
+ |> fold Thm.elim_implies used (* "(arg, lhs) : R'" *)
+
+ val z_eq_arg = HOLogic.mk_Trueprop (mk_eq (z, arg))
+ |> cterm_of thy |> Thm.assume
+
+ val acc = thm COMP ih_case
+ val z_acc_local = acc
+ |> Conv.fconv_rule
+ (Conv.arg_conv (Conv.arg_conv (K (Thm.symmetric (z_eq_arg RS eq_reflection)))))
+
+ val ethm = z_acc_local
+ |> Function_Ctx_Tree.export_thm thy (fixes,
+ z_eq_arg :: case_hyp :: ags @ assumes)
+ |> fold_rev forall_intr_rename (map fst oqs ~~ cqs)
+
+ val sub' = sub @ [(([],[]), acc)]
+ in
+ (sub', (hyp :: hyps, ethm :: thms))
+ end
+ | step _ _ _ _ = raise Match
+ in
+ Function_Ctx_Tree.traverse_tree step tree
+ end
+
+
+fun mk_nest_term_rule thy globals R R_cases clauses =
+ let
+ val Globals { domT, x, z, ... } = globals
+ val acc_R = mk_acc domT R
+
+ val R' = Free ("R", fastype_of R)
+
+ val Rrel = Free ("R", HOLogic.mk_setT (HOLogic.mk_prodT (domT, domT)))
+ val inrel_R = Const (@{const_name FunDef.in_rel},
+ HOLogic.mk_setT (HOLogic.mk_prodT (domT, domT)) --> fastype_of R) $ Rrel
+
+ val wfR' = HOLogic.mk_Trueprop (Const (@{const_name Wellfounded.wfP},
+ (domT --> domT --> boolT) --> boolT) $ R')
+ |> cterm_of thy (* "wf R'" *)
+
+ (* Inductive Hypothesis: !!z. (z,x):R' ==> z : acc R *)
+ val ihyp = Term.all domT $ Abs ("z", domT,
+ Logic.mk_implies (HOLogic.mk_Trueprop (R' $ Bound 0 $ x),
+ HOLogic.mk_Trueprop (acc_R $ Bound 0)))
+ |> cterm_of thy
+
+ val ihyp_a = Thm.assume ihyp |> Thm.forall_elim_vars 0
+
+ val R_z_x = cterm_of thy (HOLogic.mk_Trueprop (R $ z $ x))
+
+ val (hyps, cases) = fold (mk_nest_term_case thy globals R' ihyp_a) clauses ([], [])
+ in
+ R_cases
+ |> Thm.forall_elim (cterm_of thy z)
+ |> Thm.forall_elim (cterm_of thy x)
+ |> Thm.forall_elim (cterm_of thy (acc_R $ z))
+ |> curry op COMP (Thm.assume R_z_x)
+ |> fold_rev (curry op COMP) cases
+ |> Thm.implies_intr R_z_x
+ |> Thm.forall_intr (cterm_of thy z)
+ |> (fn it => it COMP accI)
+ |> Thm.implies_intr ihyp
+ |> Thm.forall_intr (cterm_of thy x)
+ |> (fn it => Drule.compose_single(it,2,wf_induct_rule))
+ |> curry op RS (Thm.assume wfR')
+ |> forall_intr_vars
+ |> (fn it => it COMP allI)
+ |> fold Thm.implies_intr hyps
+ |> Thm.implies_intr wfR'
+ |> Thm.forall_intr (cterm_of thy R')
+ |> Thm.forall_elim (cterm_of thy (inrel_R))
+ |> curry op RS wf_in_rel
+ |> full_simplify (HOL_basic_ss addsimps [in_rel_def])
+ |> Thm.forall_intr (cterm_of thy Rrel)
+ end
+
+
+
+(* Tail recursion (probably very fragile)
+ *
+ * FIXME:
+ * - Need to do forall_elim_vars on psimps: Unneccesary, if psimps would be taken from the same context.
+ * - Must we really replace the fvar by f here?
+ * - Splitting is not configured automatically: Problems with case?
+ *)
+fun mk_trsimps octxt globals f G R f_def R_cases G_induct clauses psimps =
+ let
+ val Globals {domT, ranT, fvar, ...} = globals
+
+ val R_cases = Thm.forall_elim_vars 0 R_cases (* FIXME: Should be already in standard form. *)
+
+ val graph_implies_dom = (* "G ?x ?y ==> dom ?x" *)
+ Goal.prove octxt ["x", "y"] [HOLogic.mk_Trueprop (G $ Free ("x", domT) $ Free ("y", ranT))]
+ (HOLogic.mk_Trueprop (mk_acc domT R $ Free ("x", domT)))
+ (fn {prems=[a], ...} =>
+ ((rtac (G_induct OF [a]))
+ THEN_ALL_NEW rtac accI
+ THEN_ALL_NEW etac R_cases
+ THEN_ALL_NEW asm_full_simp_tac (simpset_of octxt)) 1)
+
+ val default_thm =
+ forall_intr_vars graph_implies_dom COMP (f_def COMP fundef_default_value)
+
+ fun mk_trsimp clause psimp =
+ let
+ val ClauseInfo {qglr = (oqs, _, _, _), cdata =
+ ClauseContext {ctxt, cqs, gs, lhs, rhs, ...}, ...} = clause
+ val thy = ProofContext.theory_of ctxt
+ val rhs_f = Pattern.rewrite_term thy [(fvar, f)] [] rhs
+
+ val trsimp = Logic.list_implies(gs,
+ HOLogic.mk_Trueprop (HOLogic.mk_eq(f $ lhs, rhs_f))) (* "f lhs = rhs" *)
+ val lhs_acc = (mk_acc domT R $ lhs) (* "acc R lhs" *)
+ fun simp_default_tac ss =
+ asm_full_simp_tac (ss addsimps [default_thm, Let_def])
+ in
+ Goal.prove ctxt [] [] trsimp (fn _ =>
+ rtac (instantiate' [] [SOME (cterm_of thy lhs_acc)] case_split) 1
+ THEN (rtac (Thm.forall_elim_vars 0 psimp) THEN_ALL_NEW assume_tac) 1
+ THEN (simp_default_tac (simpset_of ctxt) 1)
+ THEN TRY ((etac not_acc_down 1)
+ THEN ((etac R_cases)
+ THEN_ALL_NEW (simp_default_tac (simpset_of ctxt))) 1))
+ |> fold_rev forall_intr_rename (map fst oqs ~~ cqs)
+ end
+ in
+ map2 mk_trsimp clauses psimps
+ end
+
+
+(* nominal *)
+fun prepare_nominal_function config defname [((fname, fT), mixfix)] abstract_qglrs lthy =
+ let
+ val FunctionConfig {domintros, tailrec, default=default_opt, ...} = config
+
+ val default_str = the_default "%x. undefined" default_opt (*FIXME dynamic scoping*)
+ val fvar = Free (fname, fT)
+ val domT = domain_type fT
+ val ranT = range_type fT
+
+ val default = Syntax.parse_term lthy default_str
+ |> Type.constraint fT |> Syntax.check_term lthy
+
+ val (globals, ctxt') = fix_globals domT ranT fvar lthy
+
+ val Globals { x, h, ... } = globals
+
+ val clauses = map (mk_clause_context x ctxt') abstract_qglrs
+
+ val n = length abstract_qglrs
+
+ fun build_tree (ClauseContext { ctxt, rhs, ...}) =
+ Function_Ctx_Tree.mk_tree (fname, fT) h ctxt rhs
+
+ val trees = map build_tree clauses
+ val RCss = map find_calls trees
+
+ val ((G, GIntro_thms, G_elim, G_induct, SOME G_eqvt), lthy) =
+ PROFILE "def_graph" (define_graph (graph_name defname) fvar domT ranT clauses RCss) lthy
+
+ val ((f, (_, f_defthm)), lthy) =
+ PROFILE "def_fun" (define_function (defname ^ "_sumC_def") (fname, mixfix) domT ranT G default) lthy
+
+ val RCss = map (map (inst_RC (ProofContext.theory_of lthy) fvar f)) RCss
+ val trees = map (Function_Ctx_Tree.inst_tree (ProofContext.theory_of lthy) fvar f) trees
+
+ val ((R, RIntro_thmss, R_elim), lthy) =
+ PROFILE "def_rel" (define_recursion_relation (rel_name defname) domT abstract_qglrs clauses RCss) lthy
+
+ val (_, lthy) =
+ Local_Theory.abbrev Syntax.mode_default ((Binding.name (dom_name defname), NoSyn), mk_acc domT R) lthy
+
+ val newthy = ProofContext.theory_of lthy
+ val clauses = map (transfer_clause_ctx newthy) clauses
+
+ val cert = cterm_of (ProofContext.theory_of lthy)
+
+ val xclauses = PROFILE "xclauses"
+ (map7 (mk_clause_info globals G f) (1 upto n) clauses abstract_qglrs trees
+ RCss GIntro_thms) RIntro_thmss
+
+ val complete =
+ mk_completeness globals clauses abstract_qglrs |> cert |> Thm.assume
+
+ val compat =
+ mk_compat_proof_obligations domT ranT fvar f abstract_qglrs
+ |> map (cert #> Thm.assume)
+
+ val compat_store = store_compat_thms n compat
+
+ val (goalstate, values) = PROFILE "prove_stuff"
+ (prove_stuff lthy globals G f R xclauses complete compat
+ compat_store G_elim G_eqvt) f_defthm
+
+ val mk_trsimps =
+ mk_trsimps lthy globals f G R f_defthm R_elim G_induct xclauses
+
+ fun mk_partial_rules provedgoal =
+ let
+ val newthy = theory_of_thm provedgoal (*FIXME*)
+
+ val (graph_is_function, complete_thm) =
+ provedgoal
+ |> Conjunction.elim
+ |> apfst (Thm.forall_elim_vars 0)
+
+ val f_iff = graph_is_function RS (f_defthm RS ex1_implies_iff)
+
+ val psimps = PROFILE "Proving simplification rules"
+ (mk_psimps newthy globals R xclauses values f_iff) graph_is_function
+
+ val simple_pinduct = PROFILE "Proving partial induction rule"
+ (mk_partial_induct_rule newthy globals R complete_thm) xclauses
+
+ val total_intro = PROFILE "Proving nested termination rule"
+ (mk_nest_term_rule newthy globals R R_elim) xclauses
+
+ val dom_intros =
+ if domintros then SOME (PROFILE "Proving domain introduction rules"
+ (map (mk_domain_intro lthy globals R R_elim)) xclauses)
+ else NONE
+ val trsimps = if tailrec then SOME (mk_trsimps psimps) else NONE
+
+ in
+ FunctionResult {fs=[f], G=G, R=R, cases=complete_thm,
+ psimps=psimps, simple_pinducts=[simple_pinduct],
+ termination=total_intro, trsimps=trsimps,
+ domintros=dom_intros}
+ end
+ in
+ ((f, goalstate, mk_partial_rules), lthy)
+ end
+
+
+end