--- a/Nominal/Ex/LetSimple2.thy Sat Dec 17 17:03:01 2011 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,491 +0,0 @@
-theory LetSimple2
-imports "../Nominal2"
-begin
-
-
-atom_decl name
-
-nominal_datatype trm =
- Var "name"
-| App "trm" "trm"
-| Let as::"assn" t::"trm" binds "bn as" in t
-and assn =
- Assn "name" "trm"
-binder
- bn
-where
- "bn (Assn x t) = [atom x]"
-
-print_theorems
-
-thm bn_raw.simps
-thm permute_bn_raw.simps
-thm trm_assn.perm_bn_alpha
-thm trm_assn.permute_bn
-
-thm trm_assn.fv_defs
-thm trm_assn.eq_iff
-thm trm_assn.bn_defs
-thm trm_assn.bn_inducts
-thm trm_assn.perm_simps
-thm trm_assn.induct
-thm trm_assn.inducts
-thm trm_assn.distinct
-thm trm_assn.supp
-thm trm_assn.fresh
-thm trm_assn.exhaust
-thm trm_assn.strong_exhaust
-thm trm_assn.perm_bn_simps
-
-thm alpha_bn_raw.cases
-thm trm_assn.alpha_refl
-thm trm_assn.alpha_sym
-thm trm_assn.alpha_trans
-
-lemmas alpha_bn_cases[consumes 1] = alpha_bn_raw.cases[quot_lifted]
-
-lemma alpha_bn_refl: "alpha_bn x x"
- by(rule trm_assn.alpha_refl)
-
-lemma alpha_bn_sym: "alpha_bn x y \<Longrightarrow> alpha_bn y x"
- by (rule trm_assn.alpha_sym)
-
-lemma alpha_bn_trans: "alpha_bn x y \<Longrightarrow> alpha_bn y z \<Longrightarrow> alpha_bn x z"
- using trm_assn.alpha_trans by metis
-
-lemma fv_bn_finite[simp]:
- "finite (fv_bn as)"
-apply(case_tac as rule: trm_assn.exhaust(2))
-apply(simp add: trm_assn.supp finite_supp)
-done
-
-
-lemma k: "A \<Longrightarrow> A \<and> A" by blast
-
-
-
-section {* definition with helper functions *}
-
-function
- apply_assn
-where
- "apply_assn f (Assn x t) = (f t)"
-apply(case_tac x)
-apply(simp)
-apply(case_tac b rule: trm_assn.exhaust(2))
-apply(blast)
-apply(simp)
-done
-
-termination
- by lexicographic_order
-
-function
- apply_assn2
-where
- "apply_assn2 f (Assn x t) = Assn x (f t)"
-apply(case_tac x)
-apply(simp)
-apply(case_tac b rule: trm_assn.exhaust(2))
-apply(blast)
-apply(simp)
-done
-
-termination
- by lexicographic_order
-
-lemma [eqvt]:
- shows "p \<bullet> (apply_assn f as) = apply_assn (p \<bullet> f) (p \<bullet> as)"
-apply(induct f as rule: apply_assn.induct)
-apply(simp)
-apply(perm_simp)
-apply(rule)
-done
-
-lemma [eqvt]:
- shows "p \<bullet> (apply_assn2 f as) = apply_assn2 (p \<bullet> f) (p \<bullet> as)"
-apply(induct f as rule: apply_assn.induct)
-apply(simp)
-apply(perm_simp)
-apply(rule)
-done
-
-
-nominal_primrec
- height_trm :: "trm \<Rightarrow> nat"
-where
- "height_trm (Var x) = 1"
-| "height_trm (App l r) = max (height_trm l) (height_trm r)"
-| "height_trm (Let as b) = max (apply_assn height_trm as) (height_trm b)"
- apply (simp only: eqvt_def height_trm_graph_def)
- apply (rule, perm_simp)
- apply(rule)
- apply(rule TrueI)
- apply (case_tac x rule: trm_assn.exhaust(1))
- apply (auto simp add: alpha_bn_refl)[3]
- apply (drule_tac x="assn" in meta_spec)
- apply (drule_tac x="trm" in meta_spec)
- apply(simp add: alpha_bn_refl)
- apply(simp_all)[5]
- apply(simp)
- apply(erule conjE)+
- apply(erule alpha_bn_cases)
- apply(simp)
- apply (subgoal_tac "height_trm_sumC b = height_trm_sumC ba")
- apply simp
- apply(simp add: trm_assn.bn_defs)
- apply(erule_tac c="()" in Abs_lst_fcb2)
- apply(simp_all add: pure_fresh fresh_star_def)[3]
- apply(simp_all add: eqvt_at_def)
- done
-
-(* assn-function prevents automatic discharge
-termination by lexicographic_order
-*)
-
-nominal_primrec
- subst_trm :: "trm \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> trm" ("_ [_ ::= _]" [90, 90, 90] 90)
-where
- "(Var x)[y ::= s] = (if x = y then s else (Var x))"
-| "(App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])"
-| "(set (bn as)) \<sharp>* (y, s) \<Longrightarrow>
- (Let as t)[y ::= s] = Let (apply_assn2 (\<lambda>t. t[y ::=s]) as) (t[y ::= s])"
- apply (simp only: eqvt_def subst_trm_graph_def)
- apply (rule, perm_simp)
- apply(rule)
- apply(rule TrueI)
- apply(case_tac x)
- apply(simp)
- apply (rule_tac y="a" and c="(b,c)" in trm_assn.strong_exhaust(1))
- apply (auto simp add: alpha_bn_refl)[3]
- apply(simp_all)[5]
- apply(simp)
- apply(erule conjE)+
- apply(erule alpha_bn_cases)
- apply(simp)
- apply(simp add: trm_assn.bn_defs)
- apply(erule_tac c="(ya,sa)" in Abs_lst1_fcb2)
- apply(simp add: Abs_fresh_iff fresh_star_def)
- apply(simp add: fresh_star_def)
- apply(simp_all add: eqvt_at_def perm_supp_eq fresh_star_Pair)[2]
- done
-
-
-section {* direct definitions --- problems *}
-
-lemma cheat: "P" sorry
-
-definition
- "eqvt_at_bn f as \<equiv> \<forall>p. (p \<bullet> (f as)) = f (permute_bn p as)"
-
-definition
- "alpha_bn_preserve f as \<equiv> \<forall>p. f as = f (permute_bn p as)"
-
-lemma
- fixes as::"assn"
- assumes "eqvt_at f as"
- shows "eqvt_at_bn f as"
-using assms
-unfolding eqvt_at_bn_def
-apply(rule_tac allI)
-apply(drule k)
-apply(erule conjE)
-apply(subst (asm) eqvt_at_def)
-apply(simp)
-
-oops
-
-
-
-nominal_primrec
-<<<<<<< variant A
- (invariant "\<lambda>x y. case x of Inl x1 \<Rightarrow> True | Inr x2 \<Rightarrow> alpha_bn_preserve (height_assn2::assn \<Rightarrow> nat) x2")
->>>>>>> variant B
-####### Ancestor
- (invariant "\<lambda>x y. case x of Inl x1 \<Rightarrow> True | Inr x2 \<Rightarrow> \<forall>p. (permute_bn p x2) = x2 \<longrightarrow> (p \<bullet> y) = y")
-======= end
- height_trm2 :: "trm \<Rightarrow> nat"
-and height_assn2 :: "assn \<Rightarrow> nat"
-where
- "height_trm2 (Var x) = 1"
-| "height_trm2 (App l r) = max (height_trm2 l) (height_trm2 r)"
-| "set (bn as) \<sharp>* fv_bn as \<Longrightarrow> height_trm2 (Let as b) = max (height_assn2 as) (height_trm2 b)"
-| "height_assn2 (Assn x t) = (height_trm2 t)"
- thm height_trm2_height_assn2_graph.intros[no_vars]
- thm height_trm2_height_assn2_graph_def
- apply (simp only: eqvt_def height_trm2_height_assn2_graph_def)
- apply (rule, perm_simp, rule)
- -- "invariant"
- apply(simp)
-<<<<<<< variant A
- apply(simp)
- apply(simp)
- apply(simp)
- apply(simp add: alpha_bn_preserve_def)
- apply(simp add: height_assn2_def)
- apply(simp add: trm_assn.perm_bn_simps)
- apply(rule allI)
- thm height_trm2_height_assn2_graph.intros[no_vars]
- thm height_trm2_height_assn2_sumC_def
- apply(rule cheat)
- apply -
->>>>>>> variant B
-####### Ancestor
- apply(simp)
- apply(simp)
- apply(simp)
- apply(rule cheat)
- apply -
-======= end
- --"completeness"
- apply (case_tac x)
- apply(simp)
- apply (rule_tac y="a" and c="a" in trm_assn.strong_exhaust(1))
- apply (auto simp add: alpha_bn_refl)[3]
- apply (drule_tac x="assn" in meta_spec)
- apply (drule_tac x="trm" in meta_spec)
- apply(simp add: alpha_bn_refl)
- apply(rotate_tac 3)
- apply(drule meta_mp)
- apply(simp add: fresh_star_def trm_assn.fresh)
- apply(simp add: fresh_def)
- apply(subst supp_finite_atom_set)
- apply(simp)
- apply(simp)
- apply(simp)
- apply (case_tac b rule: trm_assn.exhaust(2))
- apply (auto)[1]
- apply(simp_all)[7]
- prefer 2
- apply(simp)
- prefer 2
- apply(simp)
- --"let case"
- apply (simp only: meta_eq_to_obj_eq[OF height_trm2_def, symmetric, unfolded fun_eq_iff])
- apply (simp only: meta_eq_to_obj_eq[OF height_assn2_def, symmetric, unfolded fun_eq_iff])
- apply (subgoal_tac "eqvt_at height_assn2 as")
- apply (subgoal_tac "eqvt_at height_assn2 asa")
- apply (subgoal_tac "eqvt_at height_trm2 b")
- apply (subgoal_tac "eqvt_at height_trm2 ba")
- apply (thin_tac "eqvt_at height_trm2_height_assn2_sumC (Inr as)")
- apply (thin_tac "eqvt_at height_trm2_height_assn2_sumC (Inr asa)")
- apply (thin_tac "eqvt_at height_trm2_height_assn2_sumC (Inl b)")
- apply (thin_tac "eqvt_at height_trm2_height_assn2_sumC (Inl ba)")
- defer
- apply (simp add: eqvt_at_def height_trm2_def)
- apply (simp add: eqvt_at_def height_trm2_def)
- apply (simp add: eqvt_at_def height_assn2_def)
- apply (simp add: eqvt_at_def height_assn2_def)
- apply (subgoal_tac "height_assn2 as = height_assn2 asa")
- apply (subgoal_tac "height_trm2 b = height_trm2 ba")
- apply simp
- apply(simp)
- apply(erule conjE)+
- apply(erule alpha_bn_cases)
- apply(simp)
- apply(simp add: trm_assn.bn_defs)
- apply(erule_tac c="()" in Abs_lst_fcb2)
- apply(simp_all add: fresh_star_def pure_fresh)[3]
- apply(simp add: eqvt_at_def)
- apply(simp add: eqvt_at_def)
- apply(drule Inl_inject)
- apply(simp (no_asm_use))
- apply(clarify)
- apply(erule alpha_bn_cases)
- apply(simp del: trm_assn.eq_iff)
- apply(simp only: trm_assn.bn_defs)
-<<<<<<< variant A
- apply(erule_tac c="()" in Abs_lst1_fcb2')
- apply(simp_all add: fresh_star_def pure_fresh)[3]
- apply(simp add: eqvt_at_bn_def)
- apply(simp add: trm_assn.perm_bn_simps)
- apply(simp add: eqvt_at_bn_def)
- apply(simp add: trm_assn.perm_bn_simps)
- done
-
->>>>>>> variant B
- apply(erule_tac c="(trm_rawa)" in Abs_lst1_fcb2')
- apply(simp_all add: fresh_star_def pure_fresh)[2]
- apply(simp add: trm_assn.supp)
- apply(simp add: fresh_def)
- apply(subst (asm) supp_finite_atom_set)
- apply(simp add: finite_supp)
- apply(subst (asm) supp_finite_atom_set)
- apply(simp add: finite_supp)
- apply(simp)
- apply(simp add: eqvt_at_def perm_supp_eq)
- apply(simp add: eqvt_at_def perm_supp_eq)
- done
-####### Ancestor
- apply(erule_tac c="()" in Abs_lst1_fcb2')
- apply(simp_all add: fresh_star_def pure_fresh)[3]
-
- oops
-======= end
-
-termination by lexicographic_order
-
-lemma ww1:
- shows "finite (fv_trm t)"
- and "finite (fv_bn as)"
-apply(induct t and as rule: trm_assn.inducts)
-apply(simp_all add: trm_assn.fv_defs supp_at_base)
-done
-
-text {* works, but only because no recursion in as *}
-
-nominal_primrec (invariant "\<lambda>x (y::atom set). finite y")
- frees_set :: "trm \<Rightarrow> atom set"
-where
- "frees_set (Var x) = {atom x}"
-| "frees_set (App t1 t2) = frees_set t1 \<union> frees_set t2"
-| "frees_set (Let as t) = (frees_set t) - (set (bn as)) \<union> (fv_bn as)"
- apply(simp add: eqvt_def frees_set_graph_def)
- apply(rule, perm_simp, rule)
- apply(erule frees_set_graph.induct)
- apply(auto simp add: ww1)[3]
- apply(rule_tac y="x" in trm_assn.exhaust(1))
- apply(auto simp add: alpha_bn_refl)[3]
- apply(drule_tac x="assn" in meta_spec)
- apply(drule_tac x="trm" in meta_spec)
- apply(simp add: alpha_bn_refl)
- apply(simp_all)[5]
- apply(simp)
- apply(erule conjE)
- apply(erule alpha_bn_cases)
- apply(simp add: trm_assn.bn_defs)
- apply(simp add: trm_assn.fv_defs)
- (* apply(erule_tac c="(trm_rawa)" in Abs_lst1_fcb2) *)
- apply(subgoal_tac " frees_set_sumC t - {atom name} = frees_set_sumC ta - {atom namea}")
- apply(simp)
- apply(erule_tac c="()" in Abs_lst1_fcb2)
- apply(simp add: fresh_minus_atom_set)
- apply(simp add: fresh_star_def fresh_Unit)
- apply(simp add: Diff_eqvt eqvt_at_def, perm_simp, rule refl)
- apply(simp add: Diff_eqvt eqvt_at_def, perm_simp, rule refl)
- done
-
-termination
- by lexicographic_order
-
-lemma test:
- assumes a: "\<exists>y. f x = Inl y"
- shows "(p \<bullet> (Sum_Type.Projl (f x))) = Sum_Type.Projl ((p \<bullet> f) (p \<bullet> x))"
-using a
-apply clarify
-apply(frule_tac p="p" in permute_boolI)
-apply(simp (no_asm_use) only: eqvts)
-apply(subst (asm) permute_fun_app_eq)
-back
-apply(simp)
-done
-
-
-nominal_primrec (default "sum_case (\<lambda>x. Inl undefined) (\<lambda>x. Inr undefined)")
- subst_trm2 :: "trm \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> trm" ("_ [_ ::trm2= _]" [90, 90, 90] 90) and
- subst_assn2 :: "assn \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> assn" ("_ [_ ::assn2= _]" [90, 90, 90] 90)
-where
- "(Var x)[y ::trm2= s] = (if x = y then s else (Var x))"
-| "(App t1 t2)[y ::trm2= s] = App (t1[y ::trm2= s]) (t2[y ::trm2= s])"
-| "(set (bn as)) \<sharp>* (y, s, fv_bn as) \<Longrightarrow> (Let as t)[y ::trm2= s] = Let (ast[y ::assn2= s]) (t[y ::trm2= s])"
-| "(Assn x t)[y ::assn2= s] = Assn x (t[y ::trm2= s])"
-apply(subgoal_tac "\<And>p x r. subst_trm2_subst_assn2_graph x r \<Longrightarrow> subst_trm2_subst_assn2_graph (p \<bullet> x) (p \<bullet> r)")
-apply(simp add: eqvt_def)
-apply(rule allI)
-apply(simp add: permute_fun_def permute_bool_def)
-apply(rule ext)
-apply(rule ext)
-apply(rule iffI)
-apply(drule_tac x="p" in meta_spec)
-apply(drule_tac x="- p \<bullet> x" in meta_spec)
-apply(drule_tac x="- p \<bullet> xa" in meta_spec)
-apply(simp)
-apply(drule_tac x="-p" in meta_spec)
-apply(drule_tac x="x" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(simp)
---"Eqvt One way"
-defer
- apply(rule TrueI)
- apply(case_tac x)
- apply(simp)
- apply(case_tac a)
- apply(simp)
- apply(rule_tac y="aa" and c="(b, c, aa)" in trm_assn.strong_exhaust(1))
- apply(blast)+
- apply(simp)
- apply(drule_tac x="assn" in meta_spec)
- apply(drule_tac x="b" in meta_spec)
- apply(drule_tac x="c" in meta_spec)
- apply(drule_tac x="trm" in meta_spec)
- apply(simp add: trm_assn.alpha_refl)
- apply(rotate_tac 5)
- apply(drule meta_mp)
- apply(simp add: fresh_star_Pair)
- apply(simp add: fresh_star_def trm_assn.fresh)
- apply(simp add: fresh_def)
- apply(subst supp_finite_atom_set)
- apply(simp)
- apply(simp)
- apply(simp)
- apply(case_tac b)
- apply(simp)
- apply(rule_tac y="a" in trm_assn.exhaust(2))
- apply(simp)
- apply(blast)
---"compatibility"
- apply(all_trivials)
- apply(simp)
- apply(simp)
- prefer 2
- apply(simp)
- apply(drule Inl_inject)
- apply(rule arg_cong)
- back
- apply (simp only: meta_eq_to_obj_eq[OF subst_trm2_def, symmetric, unfolded fun_eq_iff])
- apply (simp only: meta_eq_to_obj_eq[OF subst_assn2_def, symmetric, unfolded fun_eq_iff])
- apply (subgoal_tac "eqvt_at (\<lambda>ast. subst_assn2 ast ya sa) ast")
- apply (subgoal_tac "eqvt_at (\<lambda>asta. subst_assn2 asta ya sa) asta")
- apply (subgoal_tac "eqvt_at (\<lambda>t. subst_trm2 t ya sa) t")
- apply (subgoal_tac "eqvt_at (\<lambda>ta. subst_trm2 ta ya sa) ta")
- apply (thin_tac "eqvt_at subst_trm2_subst_assn2_sumC (Inr (ast, y, s))")
- apply (thin_tac "eqvt_at subst_trm2_subst_assn2_sumC (Inr (asta, ya, sa))")
- apply (thin_tac "eqvt_at subst_trm2_subst_assn2_sumC (Inl (t, y, s))")
- apply (thin_tac "eqvt_at subst_trm2_subst_assn2_sumC (Inl (ta, ya, sa))")
- apply(simp)
- (* HERE *)
- apply (subgoal_tac "subst_assn2 ast y s= subst_assn2 asta ya sa")
- apply (subgoal_tac "subst_trm2 t y s = subst_trm2 ta ya sa")
- apply(simp)
- apply(simp)
- apply(erule_tac conjE)+
- apply(erule alpha_bn_cases)
- apply(simp add: trm_assn.bn_defs)
- apply(rotate_tac 7)
- apply (erule_tac c="(ya,sa)" in Abs_lst1_fcb2)
- apply(erule fresh_eqvt_at)
-
-
- thm fresh_eqvt_at
- apply(simp add: Abs_fresh_iff)
- apply(simp add: fresh_star_def fresh_Pair)
- apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
- apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
-
-
-
- apply(simp_all add: fresh_star_def fresh_Pair_elim)[1]
- apply(blast)
- apply(simp_all)[5]
- apply(simp (no_asm_use))
- apply(simp)
- apply(erule conjE)+
- apply (erule_tac c="(ya,sa)" in Abs_lst1_fcb2)
- apply(simp add: Abs_fresh_iff)
- apply(simp add: fresh_star_def fresh_Pair)
- apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
- apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
-done
-
-
-end
\ No newline at end of file