Nominal/Ex/LetInv.thy
branchNominal2-Isabelle2011-1
changeset 3071 11f6a561eb4b
parent 3070 4b4742aa43f2
child 3072 7eb352826b42
--- a/Nominal/Ex/LetInv.thy	Sat Dec 17 17:03:01 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,284 +0,0 @@
-theory Let
-imports "../Nominal2" 
-begin
-
-atom_decl name
-
-nominal_datatype trm =
-  Var "name"
-| App "trm" "trm"
-| Lam x::"name" t::"trm"    binds  x in t
-| Let as::"assn" t::"trm"   binds "bn as" in t
-and assn =
-  ANil
-| ACons "name" "trm" "assn"
-binder
-  bn
-where
-  "bn ANil = []"
-| "bn (ACons x t as) = (atom x) # (bn as)"
-
-print_theorems
-
-thm alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.intros
-thm bn_raw.simps
-thm permute_bn_raw.simps
-thm trm_assn.perm_bn_alpha
-thm trm_assn.permute_bn
-
-thm trm_assn.fv_defs
-thm trm_assn.eq_iff 
-thm trm_assn.bn_defs
-thm trm_assn.bn_inducts
-thm trm_assn.perm_simps
-thm trm_assn.induct
-thm trm_assn.inducts
-thm trm_assn.distinct
-thm trm_assn.supp
-thm trm_assn.fresh
-thm trm_assn.exhaust
-thm trm_assn.strong_exhaust
-thm trm_assn.perm_bn_simps
-
-lemma alpha_bn_inducts_raw[consumes 1]:
-  "\<lbrakk>alpha_bn_raw a b; P3 ANil_raw ANil_raw;
- \<And>trm_raw trm_rawa assn_raw assn_rawa name namea.
-    \<lbrakk>alpha_trm_raw trm_raw trm_rawa; alpha_bn_raw assn_raw assn_rawa;
-     P3 assn_raw assn_rawa\<rbrakk>
-    \<Longrightarrow> P3 (ACons_raw name trm_raw assn_raw)
-        (ACons_raw namea trm_rawa assn_rawa)\<rbrakk> \<Longrightarrow> P3 a b"
-  by (erule alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.inducts(3)[of _ _ "\<lambda>x y. True" _ "\<lambda>x y. True", simplified]) auto
-
-lemmas alpha_bn_inducts[consumes 1] = alpha_bn_inducts_raw[quot_lifted]
-
-
-
-lemma alpha_bn_refl: "alpha_bn x x"
-  by (induct x rule: trm_assn.inducts(2))
-     (rule TrueI, auto simp add: trm_assn.eq_iff)
-lemma alpha_bn_sym: "alpha_bn x y \<Longrightarrow> alpha_bn y x"
-  sorry
-lemma alpha_bn_trans: "alpha_bn x y \<Longrightarrow> alpha_bn y z \<Longrightarrow> alpha_bn x z"
-  sorry
-
-lemma bn_inj[rule_format]:
-  assumes a: "alpha_bn x y"
-  shows "bn x = bn y \<longrightarrow> x = y"
-  by (rule alpha_bn_inducts[OF a]) (simp_all add: trm_assn.bn_defs)
-
-lemma bn_inj2:
-  assumes a: "alpha_bn x y"
-  shows "\<And>q r. (q \<bullet> bn x) = (r \<bullet> bn y) \<Longrightarrow> permute_bn q x = permute_bn r y"
-using a
-apply(induct rule: alpha_bn_inducts)
-apply(simp add: trm_assn.perm_bn_simps)
-apply(simp add: trm_assn.perm_bn_simps)
-apply(simp add: trm_assn.bn_defs)
-apply(simp add: atom_eqvt)
-done
-
-lemma Abs_lst_fcb2:
-  fixes as bs :: "atom list"
-    and x y :: "'b :: fs"
-    and c::"'c::fs"
-  assumes eq: "[as]lst. x = [bs]lst. y"
-  and fcb1: "(set as) \<sharp>* c \<Longrightarrow> (set as) \<sharp>* f as x c"
-  and fresh1: "set as \<sharp>* c"
-  and fresh2: "set bs \<sharp>* c"
-  and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
-  and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
-  shows "f as x c = f bs y c"
-proof -
-  have "supp (as, x, c) supports (f as x c)"
-    unfolding  supports_def fresh_def[symmetric]
-    by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
-  then have fin1: "finite (supp (f as x c))"
-    by (auto intro: supports_finite simp add: finite_supp)
-  have "supp (bs, y, c) supports (f bs y c)"
-    unfolding  supports_def fresh_def[symmetric]
-    by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
-  then have fin2: "finite (supp (f bs y c))"
-    by (auto intro: supports_finite simp add: finite_supp)
-  obtain q::"perm" where 
-    fr1: "(q \<bullet> (set as)) \<sharp>* (x, c, f as x c, f bs y c)" and 
-    fr2: "supp q \<sharp>* Abs_lst as x" and 
-    inc: "supp q \<subseteq> (set as) \<union> q \<bullet> (set as)"
-    using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"]  
-      fin1 fin2
-    by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
-  have "Abs_lst (q \<bullet> as) (q \<bullet> x) = q \<bullet> Abs_lst as x" by simp
-  also have "\<dots> = Abs_lst as x"
-    by (simp only: fr2 perm_supp_eq)
-  finally have "Abs_lst (q \<bullet> as) (q \<bullet> x) = Abs_lst bs y" using eq by simp
-  then obtain r::perm where 
-    qq1: "q \<bullet> x = r \<bullet> y" and 
-    qq2: "q \<bullet> as = r \<bullet> bs" and 
-    qq3: "supp r \<subseteq> (q \<bullet> (set as)) \<union> set bs"
-    apply(drule_tac sym)
-    apply(simp only: Abs_eq_iff2 alphas)
-    apply(erule exE)
-    apply(erule conjE)+
-    apply(drule_tac x="p" in meta_spec)
-    apply(simp add: set_eqvt)
-    apply(blast)
-    done
-  have "(set as) \<sharp>* f as x c" 
-    apply(rule fcb1)
-    apply(rule fresh1)
-    done
-  then have "q \<bullet> ((set as) \<sharp>* f as x c)"
-    by (simp add: permute_bool_def)
-  then have "set (q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"
-    apply(simp add: fresh_star_eqvt set_eqvt)
-    apply(subst (asm) perm1)
-    using inc fresh1 fr1
-    apply(auto simp add: fresh_star_def fresh_Pair)
-    done
-  then have "set (r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
-  then have "r \<bullet> ((set bs) \<sharp>* f bs y c)"
-    apply(simp add: fresh_star_eqvt set_eqvt)
-    apply(subst (asm) perm2[symmetric])
-    using qq3 fresh2 fr1
-    apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)
-    done
-  then have fcb2: "(set bs) \<sharp>* f bs y c" by (simp add: permute_bool_def)
-  have "f as x c = q \<bullet> (f as x c)"
-    apply(rule perm_supp_eq[symmetric])
-    using inc fcb1[OF fresh1] fr1 by (auto simp add: fresh_star_def)
-  also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c" 
-    apply(rule perm1)
-    using inc fresh1 fr1 by (auto simp add: fresh_star_def)
-  also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
-  also have "\<dots> = r \<bullet> (f bs y c)"
-    apply(rule perm2[symmetric])
-    using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)
-  also have "... = f bs y c"
-    apply(rule perm_supp_eq)
-    using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)
-  finally show ?thesis by simp
-qed
-
-lemma Abs_lst1_fcb2:
-  fixes a b :: "atom"
-    and x y :: "'b :: fs"
-    and c::"'c :: fs"
-  assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)"
-  and fcb1: "a \<sharp> c \<Longrightarrow> a \<sharp> f a x c"
-  and fresh: "{a, b} \<sharp>* c"
-  and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a x c) = f (p \<bullet> a) (p \<bullet> x) c"
-  and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b y c) = f (p \<bullet> b) (p \<bullet> y) c"
-  shows "f a x c = f b y c"
-using e
-apply(drule_tac Abs_lst_fcb2[where c="c" and f="\<lambda>(as::atom list) . f (hd as)"])
-apply(simp_all)
-using fcb1 fresh perm1 perm2
-apply(simp_all add: fresh_star_def)
-done
-
-
-function
-  apply_assn2 :: "(trm \<Rightarrow> trm) \<Rightarrow> assn \<Rightarrow> assn"
-where
-  "apply_assn2 f ANil = ANil"
-| "apply_assn2 f (ACons x t as) = ACons x (f t) (apply_assn2 f as)"
-  apply(case_tac x)
-  apply(case_tac b rule: trm_assn.exhaust(2))
-  apply(simp_all)
-  apply(blast)
-  done
-
-termination by lexicographic_order
-
-lemma apply_assn_eqvt[eqvt]:
-  "p \<bullet> (apply_assn2 f a) = apply_assn2 (p \<bullet> f) (p \<bullet> a)"
-  apply(induct f a rule: apply_assn2.induct)
-  apply simp_all
-  apply(perm_simp)
-  apply rule
-  done
-
-lemma
-  fixes x y :: "'a :: fs"
-  shows "[a # as]lst. x = [b # bs]lst. y \<Longrightarrow> [[a]]lst. [as]lst. x = [[b]]lst. [bs]lst. y"
-  apply (simp add: Abs_eq_iff)
-  apply (elim exE)
-  apply (rule_tac x="p" in exI)
-  apply (simp add: alphas)
-  apply clarify
-  apply rule
-  apply (simp add: supp_Abs)
-  apply blast
-  apply (simp add: supp_Abs fresh_star_def)
-  apply blast
-  done
-
-lemma
-  assumes neq: "a \<noteq> b" "sort_of a = sort_of b"
-  shows "[[a]]lst. [[a]]lst. a = [[a]]lst. [[b]]lst. b \<and> [[a, a]]lst. a \<noteq> [[a, b]]lst. b"
-  apply (simp add: Abs1_eq_iff)
-  apply rule
-  apply (simp add: Abs_eq_iff alphas supp_atom fresh_star_def)
-  apply (rule_tac x="(a \<rightleftharpoons> b)" in exI)
-  apply (simp add: neq)
-  apply (simp add: Abs_eq_iff alphas supp_atom fresh_star_def neq)
-  done
-
-nominal_primrec
-    subst  :: "name \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow> trm"
-where
-  "subst s t (Var x) = (if (s = x) then t else (Var x))"
-| "subst s t (App l r) = App (subst s t l) (subst s t r)"
-| "atom v \<sharp> (s, t) \<Longrightarrow> subst s t (Lam v b) = Lam v (subst s t b)"
-| "set (bn as) \<sharp>* (s, t) \<Longrightarrow> subst s t (Let as b) = Let (apply_assn2 (subst s t) as) (subst s t b)"
-  apply (simp only: eqvt_def subst_graph_def)
-  apply (rule, perm_simp, rule)
-  apply (rule TrueI)
-  apply (case_tac x)
-  apply (rule_tac y="c" and c="(a,b)" in trm_assn.strong_exhaust(1))
-  apply (auto simp add: fresh_star_def)[3]
-  apply (drule_tac x="assn" in meta_spec)
-  apply (simp add: Abs1_eq_iff alpha_bn_refl)
-  apply auto[7]
-  prefer 2
-  apply(simp)
-  thm subst_sumC_def
-  thm THE_default_def
-  thm theI
-  apply (erule_tac c="(sa, ta)" in Abs_lst1_fcb2)
-  apply (simp add: Abs_fresh_iff)
-  apply (simp add: fresh_star_def)
-  apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def)[2]
-  apply (subgoal_tac "apply_assn2 (\<lambda>x2\<Colon>trm. subst_sumC (sa, ta, x2)) asa
-    = apply_assn2 (\<lambda>x2\<Colon>trm. subst_sumC (sa, ta, x2)) as")
-  prefer 2
-  apply (erule alpha_bn_inducts)
-  apply simp
-  apply (simp only: apply_assn2.simps)
-  apply simp
---"We know nothing about names; not true; but we can apply fcb2"
-  defer
-  apply (simp only: )
-  apply (erule_tac c="(sa, ta)" in Abs_lst_fcb2)
---"We again need induction for fcb assumption; this time true"
-  apply (induct_tac as rule: trm_assn.inducts(2))
-  apply (rule TrueI)+
-  apply (simp_all add: trm_assn.bn_defs fresh_star_def)[2]
-  apply (auto simp add: Abs_fresh_iff)[1]
-  apply assumption+
---"But eqvt is not going to be true as well"
-  apply (simp add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def trm_assn.fv_bn_eqvt)
-  apply (simp add: apply_assn_eqvt)
-  apply (drule sym)
-  apply (subgoal_tac "p \<bullet> (\<lambda>x2\<Colon>trm. subst_sumC (sa, ta, x2)) = (\<lambda>x2\<Colon>trm. subst_sumC (sa, ta, x2))")
-  apply (simp)
-  apply (erule alpha_bn_inducts)
-  apply simp
-  apply simp
-  apply (simp add: trm_assn.bn_defs)
---"Again we cannot relate 'namea' with 'p \<bullet> name'"
-  prefer 4
-  apply (erule alpha_bn_inducts)
-  apply simp_all[2]
-  oops
-
-end