Nominal/nominal_dt_alpha.ML
changeset 2389 0f24c961b5f6
parent 2387 082d9fd28f89
child 2390 920366e646b0
--- a/Nominal/nominal_dt_alpha.ML	Fri Jul 30 00:40:32 2010 +0100
+++ b/Nominal/nominal_dt_alpha.ML	Sat Jul 31 01:24:39 2010 +0100
@@ -17,6 +17,9 @@
   val mk_alpha_eq_iff: Proof.context -> thm list -> thm list -> thm list -> 
     thm list -> (thm list * thm list)
 
+  val alpha_prove: term list -> (term * ((term * term) -> term)) list -> thm -> 
+    (Proof.context -> int -> tactic) -> Proof.context -> thm list
+
   val raw_prove_refl: term list -> term list -> thm list -> thm -> Proof.context -> thm list
   val raw_prove_sym: term list -> thm list -> thm -> Proof.context -> thm list
   val raw_prove_trans: term list -> thm list -> thm list -> thm -> thm list -> Proof.context -> thm list
@@ -340,6 +343,52 @@
 end
 
 
+(** proof by induction over the alpha-definitions **)
+
+fun is_true @{term "Trueprop True"} = true
+  | is_true _ = false 
+
+fun alpha_prove alphas props alpha_induct_thm cases_tac ctxt =
+let
+  val arg_tys = map (domain_type o fastype_of) alphas
+
+  val ((arg_names1, arg_names2), ctxt') =
+    ctxt
+    |> Variable.variant_fixes (replicate (length alphas) "x") 
+    ||>> Variable.variant_fixes (replicate (length alphas) "y")
+
+  val args1 = map2 (curry Free) arg_names1 arg_tys
+  val args2 = map2 (curry Free) arg_names2 arg_tys
+
+  val true_trms = replicate (length alphas) (K @{term True})
+  
+  fun apply_all x fs = map (fn f => f x) fs
+  val goal_rhs = 
+    group (props @ (alphas ~~ true_trms))
+    |> map snd 
+    |> map2 apply_all (args1 ~~ args2)
+    |> map fold_conj
+
+  fun apply_trm_pair t (ar1, ar2) = t $ ar1 $ ar2
+  val goal_lhs = map2 apply_trm_pair alphas (args1 ~~ args2)
+
+  val goal =
+    (map2 (curry HOLogic.mk_imp) goal_lhs goal_rhs)
+    |> foldr1 HOLogic.mk_conj
+    |> HOLogic.mk_Trueprop
+in
+  Goal.prove ctxt' [] [] goal
+    (fn {context, ...} => HEADGOAL 
+      (DETERM o (rtac alpha_induct_thm) THEN_ALL_NEW (rtac @{thm TrueI} ORELSE' cases_tac context)))
+  |> singleton (ProofContext.export ctxt' ctxt)
+  |> Datatype_Aux.split_conj_thm 
+  |> map Datatype_Aux.split_conj_thm
+  |> flat
+  |> map zero_var_indexes
+  |> map (fn th => th RS mp)
+  |> filter_out (is_true o concl_of)
+end
+
 
 (** reflexivity proof for the alphas **)
 
@@ -416,51 +465,22 @@
       trans_prem_tac pred_names ctxt ] 
 end
 
-fun prove_sym_tac pred_names intros induct ctxt =
-let
-  val prem_eq_tac = rtac @{thm sym} THEN' atac   
-  val prem_unbound_tac = atac
-
-  val prem_cases_tacs = FIRST' 
-    [prem_eq_tac, prem_unbound_tac, prem_bound_tac pred_names ctxt]
-in
-  HEADGOAL (rtac induct THEN_ALL_NEW 
-    (resolve_tac intros THEN_ALL_NEW prem_cases_tacs))
-end
-
-fun prep_sym_goal alpha_trm (arg1, arg2) =
-let
-  val lhs = alpha_trm $ arg1 $ arg2
-  val rhs = alpha_trm $ arg2 $ arg1
-in
-  HOLogic.mk_imp (lhs, rhs)  
-end
-
 fun raw_prove_sym alpha_trms alpha_intros alpha_induct ctxt =
 let
-  val alpha_names =  map (fst o dest_Const) alpha_trms
-  val arg_tys = 
-    alpha_trms
-    |> map fastype_of
-    |> map domain_type  
-  val (arg_names1, (arg_names2, ctxt')) =
-    ctxt
-    |> Variable.variant_fixes (replicate (length arg_tys) "x") 
-    ||> Variable.variant_fixes (replicate (length arg_tys) "y")   
-  val args1 = map Free (arg_names1 ~~ arg_tys) 
-  val args2 = map Free (arg_names2 ~~ arg_tys)
-  val goal = HOLogic.mk_Trueprop 
-    (foldr1 HOLogic.mk_conj (map2 prep_sym_goal alpha_trms (args1 ~~ args2)))	      
+  val props = map (fn t => fn (x, y) => t $ y $ x) alpha_trms
+  
+  fun tac ctxt = 
+    let
+      val alpha_names =  map (fst o dest_Const) alpha_trms   
+    in
+      resolve_tac alpha_intros THEN_ALL_NEW 
+      FIRST' [atac, rtac @{thm sym} THEN' atac, prem_bound_tac alpha_names ctxt]
+  end
 in
-  Goal.prove ctxt' [] [] goal 
-    (fn {context,...} =>  prove_sym_tac alpha_names alpha_intros alpha_induct context)
-    |> singleton (ProofContext.export ctxt' ctxt)
-    |> Datatype_Aux.split_conj_thm 
-    |> map (fn th => zero_var_indexes (th RS mp))
+  alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct tac ctxt 
 end
 
 
-
 (** transitivity proof for alphas **)
 
 (* applies cases rules and resolves them with the last premise *)
@@ -500,58 +520,39 @@
         asm_full_simp_tac (HOL_ss addsimps prod_simps) ])
 end
 			  
-fun prove_trans_tac pred_names raw_dt_thms intros induct cases ctxt =
+fun prove_trans_tac pred_names raw_dt_thms intros cases ctxt =
 let
   fun all_cases ctxt = 
     asm_full_simp_tac (HOL_basic_ss addsimps raw_dt_thms) 
     THEN' TRY o non_trivial_cases_tac pred_names intros ctxt
 in
-  HEADGOAL (rtac induct THEN_ALL_NEW  
-    EVERY' [ rtac @{thm allI}, rtac @{thm impI}, 
-             ecases_tac cases ctxt THEN_ALL_NEW all_cases ctxt ])
+  EVERY' [ rtac @{thm allI}, rtac @{thm impI}, 
+           ecases_tac cases ctxt THEN_ALL_NEW all_cases ctxt ]
 end
 
-fun prep_trans_goal alpha_trm ((arg1, arg2), arg_ty) =
+fun prep_trans_goal alpha_trm (arg1, arg2) =
 let
-  val lhs = alpha_trm $ arg1 $ arg2
+  val arg_ty = fastype_of arg1
   val mid = alpha_trm $ arg2 $ (Bound 0)
   val rhs = alpha_trm $ arg1 $ (Bound 0) 
 in
-  HOLogic.mk_imp (lhs, 
-    HOLogic.all_const arg_ty $ Abs ("z", arg_ty, 
-      HOLogic.mk_imp (mid, rhs)))
+  HOLogic.all_const arg_ty $ Abs ("z", arg_ty, HOLogic.mk_imp (mid, rhs))
 end
 
-val norm = @{lemma "A --> (!x. B x --> C x) ==> (!!x. [|A; B x|] ==> C x)" by simp}
-
 fun raw_prove_trans alpha_trms raw_dt_thms alpha_intros alpha_induct alpha_cases ctxt =
 let
-  val alpha_names =  map (fst o dest_Const) alpha_trms
-  val arg_tys = 
-    alpha_trms
-    |> map fastype_of
-    |> map domain_type  
-  val (arg_names1, (arg_names2, ctxt')) =
-    ctxt
-    |> Variable.variant_fixes (replicate (length arg_tys) "x") 
-    ||> Variable.variant_fixes (replicate (length arg_tys) "y")
-  val args1 = map Free (arg_names1 ~~ arg_tys) 
-  val args2 = map Free (arg_names2 ~~ arg_tys)
-  val goal = HOLogic.mk_Trueprop 
-    (foldr1 HOLogic.mk_conj (map2 prep_trans_goal alpha_trms (args1 ~~ args2 ~~ arg_tys))) 
+  val alpha_names =  map (fst o dest_Const) alpha_trms 
+  val props = map prep_trans_goal alpha_trms
+  val norm = @{lemma "A ==> (!x. B x --> C x) ==> (!!x. [|A; B x|] ==> C x)" by simp}  
 in
-  Goal.prove ctxt' [] [] goal 
-    (fn {context,...} =>  
-       prove_trans_tac alpha_names raw_dt_thms alpha_intros alpha_induct alpha_cases context)
-    |> singleton (ProofContext.export ctxt' ctxt)
-    |> Datatype_Aux.split_conj_thm 
-    |> map (fn th => zero_var_indexes (th RS norm))
+  alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct
+    (prove_trans_tac alpha_names raw_dt_thms alpha_intros alpha_cases) ctxt
 end
 
 (* proves the equivp predicate for all alphas *)
 
 val equivp_intro = 
-  @{lemma "[|!x. R x x; !x y. R x y --> R y x; !x y z. R x y --> R y z --> R x z|] ==> equivp R"
+  @{lemma "[|!x. R x x; !x y. R x y --> R y x; !x y. R x y --> (!z. R y z --> R x z)|] ==> equivp R"
     by (rule equivpI, unfold reflp_def symp_def transp_def, blast+)}
 
 fun raw_prove_equivp alphas refl symm trans ctxt = 
@@ -571,9 +572,6 @@
 
 (* proves that alpha_raw implies alpha_bn *)
 
-fun is_true @{term "Trueprop True"} = true
-  | is_true _ = false 
-
 fun raw_prove_bn_imp_tac pred_names alpha_intros ctxt = 
   SUBPROOF (fn {prems, context, ...} => 
     let