--- a/Nominal/nominal_dt_alpha.ML Fri Jul 30 00:40:32 2010 +0100
+++ b/Nominal/nominal_dt_alpha.ML Sat Jul 31 01:24:39 2010 +0100
@@ -17,6 +17,9 @@
val mk_alpha_eq_iff: Proof.context -> thm list -> thm list -> thm list ->
thm list -> (thm list * thm list)
+ val alpha_prove: term list -> (term * ((term * term) -> term)) list -> thm ->
+ (Proof.context -> int -> tactic) -> Proof.context -> thm list
+
val raw_prove_refl: term list -> term list -> thm list -> thm -> Proof.context -> thm list
val raw_prove_sym: term list -> thm list -> thm -> Proof.context -> thm list
val raw_prove_trans: term list -> thm list -> thm list -> thm -> thm list -> Proof.context -> thm list
@@ -340,6 +343,52 @@
end
+(** proof by induction over the alpha-definitions **)
+
+fun is_true @{term "Trueprop True"} = true
+ | is_true _ = false
+
+fun alpha_prove alphas props alpha_induct_thm cases_tac ctxt =
+let
+ val arg_tys = map (domain_type o fastype_of) alphas
+
+ val ((arg_names1, arg_names2), ctxt') =
+ ctxt
+ |> Variable.variant_fixes (replicate (length alphas) "x")
+ ||>> Variable.variant_fixes (replicate (length alphas) "y")
+
+ val args1 = map2 (curry Free) arg_names1 arg_tys
+ val args2 = map2 (curry Free) arg_names2 arg_tys
+
+ val true_trms = replicate (length alphas) (K @{term True})
+
+ fun apply_all x fs = map (fn f => f x) fs
+ val goal_rhs =
+ group (props @ (alphas ~~ true_trms))
+ |> map snd
+ |> map2 apply_all (args1 ~~ args2)
+ |> map fold_conj
+
+ fun apply_trm_pair t (ar1, ar2) = t $ ar1 $ ar2
+ val goal_lhs = map2 apply_trm_pair alphas (args1 ~~ args2)
+
+ val goal =
+ (map2 (curry HOLogic.mk_imp) goal_lhs goal_rhs)
+ |> foldr1 HOLogic.mk_conj
+ |> HOLogic.mk_Trueprop
+in
+ Goal.prove ctxt' [] [] goal
+ (fn {context, ...} => HEADGOAL
+ (DETERM o (rtac alpha_induct_thm) THEN_ALL_NEW (rtac @{thm TrueI} ORELSE' cases_tac context)))
+ |> singleton (ProofContext.export ctxt' ctxt)
+ |> Datatype_Aux.split_conj_thm
+ |> map Datatype_Aux.split_conj_thm
+ |> flat
+ |> map zero_var_indexes
+ |> map (fn th => th RS mp)
+ |> filter_out (is_true o concl_of)
+end
+
(** reflexivity proof for the alphas **)
@@ -416,51 +465,22 @@
trans_prem_tac pred_names ctxt ]
end
-fun prove_sym_tac pred_names intros induct ctxt =
-let
- val prem_eq_tac = rtac @{thm sym} THEN' atac
- val prem_unbound_tac = atac
-
- val prem_cases_tacs = FIRST'
- [prem_eq_tac, prem_unbound_tac, prem_bound_tac pred_names ctxt]
-in
- HEADGOAL (rtac induct THEN_ALL_NEW
- (resolve_tac intros THEN_ALL_NEW prem_cases_tacs))
-end
-
-fun prep_sym_goal alpha_trm (arg1, arg2) =
-let
- val lhs = alpha_trm $ arg1 $ arg2
- val rhs = alpha_trm $ arg2 $ arg1
-in
- HOLogic.mk_imp (lhs, rhs)
-end
-
fun raw_prove_sym alpha_trms alpha_intros alpha_induct ctxt =
let
- val alpha_names = map (fst o dest_Const) alpha_trms
- val arg_tys =
- alpha_trms
- |> map fastype_of
- |> map domain_type
- val (arg_names1, (arg_names2, ctxt')) =
- ctxt
- |> Variable.variant_fixes (replicate (length arg_tys) "x")
- ||> Variable.variant_fixes (replicate (length arg_tys) "y")
- val args1 = map Free (arg_names1 ~~ arg_tys)
- val args2 = map Free (arg_names2 ~~ arg_tys)
- val goal = HOLogic.mk_Trueprop
- (foldr1 HOLogic.mk_conj (map2 prep_sym_goal alpha_trms (args1 ~~ args2)))
+ val props = map (fn t => fn (x, y) => t $ y $ x) alpha_trms
+
+ fun tac ctxt =
+ let
+ val alpha_names = map (fst o dest_Const) alpha_trms
+ in
+ resolve_tac alpha_intros THEN_ALL_NEW
+ FIRST' [atac, rtac @{thm sym} THEN' atac, prem_bound_tac alpha_names ctxt]
+ end
in
- Goal.prove ctxt' [] [] goal
- (fn {context,...} => prove_sym_tac alpha_names alpha_intros alpha_induct context)
- |> singleton (ProofContext.export ctxt' ctxt)
- |> Datatype_Aux.split_conj_thm
- |> map (fn th => zero_var_indexes (th RS mp))
+ alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct tac ctxt
end
-
(** transitivity proof for alphas **)
(* applies cases rules and resolves them with the last premise *)
@@ -500,58 +520,39 @@
asm_full_simp_tac (HOL_ss addsimps prod_simps) ])
end
-fun prove_trans_tac pred_names raw_dt_thms intros induct cases ctxt =
+fun prove_trans_tac pred_names raw_dt_thms intros cases ctxt =
let
fun all_cases ctxt =
asm_full_simp_tac (HOL_basic_ss addsimps raw_dt_thms)
THEN' TRY o non_trivial_cases_tac pred_names intros ctxt
in
- HEADGOAL (rtac induct THEN_ALL_NEW
- EVERY' [ rtac @{thm allI}, rtac @{thm impI},
- ecases_tac cases ctxt THEN_ALL_NEW all_cases ctxt ])
+ EVERY' [ rtac @{thm allI}, rtac @{thm impI},
+ ecases_tac cases ctxt THEN_ALL_NEW all_cases ctxt ]
end
-fun prep_trans_goal alpha_trm ((arg1, arg2), arg_ty) =
+fun prep_trans_goal alpha_trm (arg1, arg2) =
let
- val lhs = alpha_trm $ arg1 $ arg2
+ val arg_ty = fastype_of arg1
val mid = alpha_trm $ arg2 $ (Bound 0)
val rhs = alpha_trm $ arg1 $ (Bound 0)
in
- HOLogic.mk_imp (lhs,
- HOLogic.all_const arg_ty $ Abs ("z", arg_ty,
- HOLogic.mk_imp (mid, rhs)))
+ HOLogic.all_const arg_ty $ Abs ("z", arg_ty, HOLogic.mk_imp (mid, rhs))
end
-val norm = @{lemma "A --> (!x. B x --> C x) ==> (!!x. [|A; B x|] ==> C x)" by simp}
-
fun raw_prove_trans alpha_trms raw_dt_thms alpha_intros alpha_induct alpha_cases ctxt =
let
- val alpha_names = map (fst o dest_Const) alpha_trms
- val arg_tys =
- alpha_trms
- |> map fastype_of
- |> map domain_type
- val (arg_names1, (arg_names2, ctxt')) =
- ctxt
- |> Variable.variant_fixes (replicate (length arg_tys) "x")
- ||> Variable.variant_fixes (replicate (length arg_tys) "y")
- val args1 = map Free (arg_names1 ~~ arg_tys)
- val args2 = map Free (arg_names2 ~~ arg_tys)
- val goal = HOLogic.mk_Trueprop
- (foldr1 HOLogic.mk_conj (map2 prep_trans_goal alpha_trms (args1 ~~ args2 ~~ arg_tys)))
+ val alpha_names = map (fst o dest_Const) alpha_trms
+ val props = map prep_trans_goal alpha_trms
+ val norm = @{lemma "A ==> (!x. B x --> C x) ==> (!!x. [|A; B x|] ==> C x)" by simp}
in
- Goal.prove ctxt' [] [] goal
- (fn {context,...} =>
- prove_trans_tac alpha_names raw_dt_thms alpha_intros alpha_induct alpha_cases context)
- |> singleton (ProofContext.export ctxt' ctxt)
- |> Datatype_Aux.split_conj_thm
- |> map (fn th => zero_var_indexes (th RS norm))
+ alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct
+ (prove_trans_tac alpha_names raw_dt_thms alpha_intros alpha_cases) ctxt
end
(* proves the equivp predicate for all alphas *)
val equivp_intro =
- @{lemma "[|!x. R x x; !x y. R x y --> R y x; !x y z. R x y --> R y z --> R x z|] ==> equivp R"
+ @{lemma "[|!x. R x x; !x y. R x y --> R y x; !x y. R x y --> (!z. R y z --> R x z)|] ==> equivp R"
by (rule equivpI, unfold reflp_def symp_def transp_def, blast+)}
fun raw_prove_equivp alphas refl symm trans ctxt =
@@ -571,9 +572,6 @@
(* proves that alpha_raw implies alpha_bn *)
-fun is_true @{term "Trueprop True"} = true
- | is_true _ = false
-
fun raw_prove_bn_imp_tac pred_names alpha_intros ctxt =
SUBPROOF (fn {prems, context, ...} =>
let