Quot/quotient_typ.ML
changeset 725 0d98a4c7f8dc
parent 719 a9e55e1ef64c
child 760 c1989de100b4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Quot/quotient_typ.ML	Sat Dec 12 01:44:56 2009 +0100
@@ -0,0 +1,226 @@
+signature QUOTIENT =
+sig
+  exception LIFT_MATCH of string
+
+  val quotient_type: ((binding * mixfix) * (typ * term)) list -> Proof.context -> Proof.state
+  val quotient_type_cmd: (((bstring * mixfix) * string) * string) list -> Proof.context -> Proof.state
+
+end;
+
+structure Quotient: QUOTIENT =
+struct
+
+exception LIFT_MATCH of string
+
+(* wrappers for define, note and theorem_i *)
+fun define (name, mx, rhs) lthy =
+let
+  val ((rhs, (_ , thm)), lthy') =
+     Local_Theory.define ((name, mx), (Attrib.empty_binding, rhs)) lthy
+in
+  ((rhs, thm), lthy')
+end
+
+fun note (name, thm, attrs) lthy =
+let
+  val ((_,[thm']), lthy') = Local_Theory.note ((name, attrs), [thm]) lthy
+in
+  (thm', lthy')
+end
+
+fun internal_attr at = Attrib.internal (K at)
+
+fun theorem after_qed goals ctxt =
+let
+  val goals' = map (rpair []) goals
+  fun after_qed' thms = after_qed (the_single thms)
+in 
+  Proof.theorem_i NONE after_qed' [goals'] ctxt
+end
+
+
+(* definition of quotient types *)
+(********************************)
+
+(* constructs the term lambda (c::rty => bool). EX (x::rty). c = rel x *)
+fun typedef_term rel rty lthy =
+let
+  val [x, c] = [("x", rty), ("c", HOLogic.mk_setT rty)]
+               |> Variable.variant_frees lthy [rel]
+               |> map Free
+in
+  lambda c
+    (HOLogic.exists_const rty $
+       lambda x (HOLogic.mk_eq (c, (rel $ x))))
+end
+
+(* makes the new type definitions and proves non-emptyness*)
+fun typedef_make (qty_name, mx, rel, rty) lthy =
+let
+  val typedef_tac =
+     EVERY1 [rewrite_goal_tac @{thms mem_def},
+             rtac @{thm exI},
+             rtac @{thm exI},
+             rtac @{thm refl}]
+  val tfrees = map fst (Term.add_tfreesT rty [])
+in
+  Local_Theory.theory_result
+    (Typedef.add_typedef false NONE
+       (qty_name, tfrees, mx)
+         (typedef_term rel rty lthy)
+           NONE typedef_tac) lthy
+end
+
+(* tactic to prove the QUOT_TYPE theorem for the new type *)
+fun typedef_quot_type_tac equiv_thm (typedef_info: Typedef.info) =
+let
+  val unfold_mem = MetaSimplifier.rewrite_rule [@{thm mem_def}]
+  val rep_thm = #Rep typedef_info |> unfold_mem
+  val rep_inv = #Rep_inverse typedef_info
+  val abs_inv = #Abs_inverse typedef_info |> unfold_mem
+  val rep_inj = #Rep_inject typedef_info
+in
+  EVERY1 [rtac @{thm QUOT_TYPE.intro},
+          rtac equiv_thm,
+          rtac rep_thm,
+          rtac rep_inv,
+          rtac abs_inv,
+          rtac @{thm exI}, 
+          rtac @{thm refl},
+          rtac rep_inj]
+end
+
+(* proves the QUOT_TYPE theorem *)
+fun typedef_quot_type_thm (rel, abs, rep, equiv_thm, typedef_info) lthy =
+let
+  val quot_type_const = Const (@{const_name "QUOT_TYPE"}, dummyT)
+  val goal = HOLogic.mk_Trueprop (quot_type_const $ rel $ abs $ rep)
+             |> Syntax.check_term lthy
+in
+  Goal.prove lthy [] [] goal
+    (K (typedef_quot_type_tac equiv_thm typedef_info))
+end
+
+(* proves the quotient theorem *)
+fun typedef_quotient_thm (rel, abs, rep, abs_def, rep_def, quot_type_thm) lthy =
+let
+  val quotient_const = Const (@{const_name "Quotient"}, dummyT)
+  val goal = HOLogic.mk_Trueprop (quotient_const $ rel $ abs $ rep)
+             |> Syntax.check_term lthy
+
+  val typedef_quotient_thm_tac =
+    EVERY1 [K (rewrite_goals_tac [abs_def, rep_def]),
+            rtac @{thm QUOT_TYPE.Quotient},
+            rtac quot_type_thm]
+in
+  Goal.prove lthy [] [] goal
+    (K typedef_quotient_thm_tac)
+end
+
+(* main function for constructing the quotient type *)
+fun mk_typedef_main (((qty_name, mx), (rty, rel)), equiv_thm) lthy =
+let
+  (* generates typedef *)
+  val ((_, typedef_info), lthy1) = typedef_make (qty_name, mx, rel, rty) lthy
+
+  (* abs and rep functions *)
+  val abs_ty = #abs_type typedef_info
+  val rep_ty = #rep_type typedef_info
+  val abs_name = #Abs_name typedef_info
+  val rep_name = #Rep_name typedef_info
+  val abs = Const (abs_name, rep_ty --> abs_ty)
+  val rep = Const (rep_name, abs_ty --> rep_ty)
+
+  (* ABS and REP definitions *)
+  val ABS_const = Const (@{const_name "QUOT_TYPE.abs"}, dummyT )
+  val REP_const = Const (@{const_name "QUOT_TYPE.rep"}, dummyT )
+  val ABS_trm = Syntax.check_term lthy1 (ABS_const $ rel $ abs)
+  val REP_trm = Syntax.check_term lthy1 (REP_const $ rep)
+  val ABS_name = Binding.prefix_name "abs_" qty_name
+  val REP_name = Binding.prefix_name "rep_" qty_name
+  val (((ABS, ABS_def), (REP, REP_def)), lthy2) =
+         lthy1 |> define (ABS_name, NoSyn, ABS_trm)
+               ||>> define (REP_name, NoSyn, REP_trm)
+
+  (* quot_type theorem *)
+  val quot_thm = typedef_quot_type_thm (rel, abs, rep, equiv_thm, typedef_info) lthy2
+  val quot_thm_name = Binding.prefix_name "QUOT_TYPE_" qty_name
+
+  (* quotient theorem *)
+  val quotient_thm = typedef_quotient_thm (rel, ABS, REP, ABS_def, REP_def, quot_thm) lthy2
+  val quotient_thm_name = Binding.prefix_name "Quotient_" qty_name
+
+  (* storing the quot-info *)
+  val qty_str = fst (Term.dest_Type abs_ty)
+  val lthy3 = quotdata_update qty_str 
+               (Logic.varifyT abs_ty, Logic.varifyT rty, rel, equiv_thm) lthy2  
+  (* FIXME: varifyT should not be used *)
+  (* FIXME: the relation needs to be a string, since its type needs *)
+  (* FIXME: to recalculated in for example REGULARIZE *)
+
+in
+  lthy3
+  |> note (quot_thm_name, quot_thm, [])
+  ||>> note (quotient_thm_name, quotient_thm, [internal_attr quotient_rules_add])
+  ||>> note (Binding.suffix_name "_equivp" qty_name, equiv_thm, [internal_attr equiv_rules_add])
+end
+
+
+
+
+(* interface and syntax setup *)
+
+(* the ML-interface takes a list of 4-tuples consisting of  *)
+(*                                                          *)
+(* - the name of the quotient type                          *)
+(* - its mixfix annotation                                  *)
+(* - the type to be quotient                                *)
+(* - the relation according to which the type is quotient   *)
+
+fun quotient_type quot_list lthy = 
+let
+  fun mk_goal (rty, rel) =
+  let
+    val equivp_ty = ([rty, rty] ---> @{typ bool}) --> @{typ bool}
+  in 
+    HOLogic.mk_Trueprop (Const (@{const_name equivp}, equivp_ty) $ rel)
+  end
+
+  val goals = map (mk_goal o snd) quot_list
+              
+  fun after_qed thms lthy =
+    fold_map mk_typedef_main (quot_list ~~ thms) lthy |> snd
+in
+  theorem after_qed goals lthy
+end
+           
+fun quotient_type_cmd spec lthy = 
+let
+  fun parse_spec (((qty_str, mx), rty_str), rel_str) =
+  let
+    val qty_name = Binding.name qty_str
+    val rty = Syntax.read_typ lthy rty_str
+    val rel = Syntax.read_term lthy rel_str 
+  in
+    ((qty_name, mx), (rty, rel))
+  end
+in
+  quotient_type (map parse_spec spec) lthy
+end
+
+val quotspec_parser = 
+    OuterParse.and_list1
+     (OuterParse.short_ident -- OuterParse.opt_infix -- 
+       (OuterParse.$$$ "=" |-- OuterParse.typ) -- 
+         (OuterParse.$$$ "/" |-- OuterParse.term))
+
+val _ = OuterKeyword.keyword "/"
+
+val _ = 
+    OuterSyntax.local_theory_to_proof "quotient" 
+      "quotient type definitions (requires equivalence proofs)"
+         OuterKeyword.thy_goal (quotspec_parser >> quotient_type_cmd)
+
+end; (* structure *)
+
+open Quotient