--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/LMCS-Paper/Appendix.thy Fri Aug 12 22:37:41 2011 +0200
@@ -0,0 +1,135 @@
+(*<*)
+theory Appendix
+imports "../Nominal/Nominal2" "~~/src/HOL/Library/LaTeXsugar"
+begin
+
+consts
+ fv :: "'a \<Rightarrow> 'b"
+ abs_set :: "'a \<Rightarrow> 'b \<Rightarrow> 'c"
+ alpha_bn :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
+ abs_set2 :: "'a \<Rightarrow> perm \<Rightarrow> 'b \<Rightarrow> 'c"
+ Abs_dist :: "'a \<Rightarrow> 'b \<Rightarrow> 'c"
+ Abs_print :: "'a \<Rightarrow> 'b \<Rightarrow> 'c"
+
+definition
+ "equal \<equiv> (op =)"
+
+notation (latex output)
+ swap ("'(_ _')" [1000, 1000] 1000) and
+ fresh ("_ # _" [51, 51] 50) and
+ fresh_star ("_ #\<^sup>* _" [51, 51] 50) and
+ supp ("supp _" [78] 73) and
+ uminus ("-_" [78] 73) and
+ If ("if _ then _ else _" 10) and
+ alpha_set ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{set}}$}}>\<^bsup>_, _, _\<^esup> _") and
+ alpha_lst ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{list}}$}}>\<^bsup>_, _, _\<^esup> _") and
+ alpha_res ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{res}}$}}>\<^bsup>_, _, _\<^esup> _") and
+ abs_set ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and
+ abs_set2 ("_ \<approx>\<^raw:\raisebox{-1pt}{\makebox[0mm][l]{$\,_{\textit{list}}$}}>\<^bsup>_\<^esup> _") and
+ fv ("fa'(_')" [100] 100) and
+ equal ("=") and
+ alpha_abs_set ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and
+ Abs_set ("[_]\<^bsub>set\<^esub>._" [20, 101] 999) and
+ Abs_lst ("[_]\<^bsub>list\<^esub>._") and
+ Abs_dist ("[_]\<^bsub>#list\<^esub>._") and
+ Abs_res ("[_]\<^bsub>res\<^esub>._") and
+ Abs_print ("_\<^bsub>set\<^esub>._") and
+ Cons ("_::_" [78,77] 73) and
+ supp_set ("aux _" [1000] 10) and
+ alpha_bn ("_ \<approx>bn _")
+
+consts alpha_trm ::'a
+consts fa_trm :: 'a
+consts alpha_trm2 ::'a
+consts fa_trm2 :: 'a
+consts ast :: 'a
+consts ast' :: 'a
+notation (latex output)
+ alpha_trm ("\<approx>\<^bsub>trm\<^esub>") and
+ fa_trm ("fa\<^bsub>trm\<^esub>") and
+ alpha_trm2 ("'(\<approx>\<^bsub>assn\<^esub>, \<approx>\<^bsub>trm\<^esub>')") and
+ fa_trm2 ("'(fa\<^bsub>assn\<^esub>, fa\<^bsub>trm\<^esub>')") and
+ ast ("'(as, t')") and
+ ast' ("'(as', t\<PRIME> ')")
+
+(*>*)
+
+text {*
+\appendix
+\section*{Appendix}
+
+ Details for one case in Theorem \ref{suppabs}, which the reader might like to ignore.
+ By definition of the abstraction type @{text "abs_set"}
+ we have
+ %
+ \begin{equation}\label{abseqiff}
+ @{thm (lhs) Abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]} \;\;\text{if and only if}\;\;
+ @{thm (rhs) Abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]}
+ \end{equation}
+
+ \noindent
+ and also
+
+ \begin{equation}\label{absperm}
+ @{thm permute_Abs(1)[no_vars]}%
+ \end{equation}
+
+ \noindent
+ The second fact derives from the definition of permutations acting on pairs
+ and $\alpha$-equivalence being equivariant. With these two facts at our disposal, we can show
+ the following lemma about swapping two atoms in an abstraction.
+
+ \begin{lemma}
+ @{thm[mode=IfThen] Abs_swap1(1)[where bs="as", no_vars]}
+ \end{lemma}
+
+ \begin{proof}
+ This lemma is straightforward using \eqref{abseqiff} and observing that
+ the assumptions give us @{term "(a \<rightleftharpoons> b) \<bullet> (supp x - as) = (supp x - as)"}.
+ Moreover @{text supp} and set difference are equivariant (see \cite{HuffmanUrban10}).
+ \end{proof}
+
+ \noindent
+ Assuming that @{text "x"} has finite support, this lemma together
+ with \eqref{absperm} allows us to show
+
+ \begin{equation}\label{halfone}
+ @{thm Abs_supports(1)[no_vars]}
+ \end{equation}
+
+ \noindent
+ which gives us ``one half'' of
+ Theorem~\ref{suppabs} (the notion of supports is defined in \cite{HuffmanUrban10}).
+ The ``other half'' is a bit more involved. To establish
+ it, we use a trick from \cite{Pitts04} and first define an auxiliary
+ function @{text aux}, taking an abstraction as argument:
+ @{thm supp_set.simps[THEN eq_reflection, no_vars]}.
+
+ We can show that
+ @{text "aux"} is equivariant (since @{term "p \<bullet> (supp x - as) = (supp (p \<bullet> x)) - (p \<bullet> as)"})
+ and therefore has empty support.
+ This in turn means
+
+ \begin{center}
+ @{text "supp (aux ([as]\<^bsub>set\<^esub>. x)) \<subseteq> supp ([as]\<^bsub>set\<^esub> x)"}
+ \end{center}
+
+ \noindent
+ Assuming @{term "supp x - as"} is a finite set,
+ we further obtain
+
+ \begin{equation}\label{halftwo}
+ @{thm (concl) Abs_supp_subset1(1)[no_vars]}
+ \end{equation}
+
+ \noindent
+ since for finite sets of atoms, @{text "bs"}, we have
+ @{thm (concl) supp_finite_atom_set[where S="bs", no_vars]}.
+ Finally, taking \eqref{halfone} and \eqref{halftwo} together establishes
+ Theorem~\ref{suppabs}.
+
+*}
+
+(*<*)
+end
+(*>*)