--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Ex/Weakening.thy Thu Jan 06 13:28:40 2011 +0000
@@ -0,0 +1,158 @@
+theory Lambda
+imports "../Nominal2"
+begin
+
+section {* The Weakening property in the simply-typed lambda-calculus *}
+
+atom_decl name
+
+nominal_datatype lam =
+ Var "name"
+| App "lam" "lam"
+| Lam x::"name" l::"lam" bind x in l ("Lam [_]. _" [100,100] 100)
+
+text {* Typing *}
+
+nominal_datatype ty =
+ TVar string
+| TFun ty ty ("_ \<rightarrow> _" [100,100] 100)
+
+lemma fresh_ty:
+ fixes x::"name"
+ and T::"ty"
+ shows "atom x \<sharp> T"
+ by (nominal_induct T rule: ty.strong_induct)
+ (simp_all add: ty.fresh pure_fresh)
+
+text {* Valid typing contexts *}
+
+inductive
+ valid :: "(name \<times> ty) list \<Rightarrow> bool"
+where
+ v_Nil[intro]: "valid []"
+| v_Cons[intro]: "\<lbrakk>atom x \<sharp> Gamma; valid Gamma\<rbrakk> \<Longrightarrow> valid ((x, T) # Gamma)"
+
+equivariance valid
+
+text {* Typing judgements *}
+
+inductive
+ typing :: "(name \<times> ty) list \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow> bool" ("_ \<turnstile> _ : _" [60,60,60] 60)
+where
+ t_Var[intro]: "\<lbrakk>valid \<Gamma>; (x, T) \<in> set \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Var x : T"
+ | t_App[intro]: "\<lbrakk>\<Gamma> \<turnstile> t1 : T1 \<rightarrow> T2; \<Gamma> \<turnstile> t2 : T1\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> App t1 t2 : T2"
+ | t_Lam[intro]: "\<lbrakk>atom x \<sharp> \<Gamma>; (x, T1) # \<Gamma> \<turnstile> t : T2\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Lam [x]. t : T1 \<rightarrow> T2"
+
+equivariance typing
+
+text {* Strong induction principle for typing judgements *}
+
+nominal_inductive typing
+ avoids t_Lam: "x"
+ by (simp_all add: fresh_star_def fresh_ty lam.fresh)
+
+
+abbreviation
+ "sub_context" :: "(name \<times> ty) list \<Rightarrow> (name \<times> ty) list \<Rightarrow> bool" (infixr "\<subseteq>" 60)
+where
+ "\<Gamma>1 \<subseteq> \<Gamma>2 \<equiv> \<forall>x T. (x, T) \<in> set \<Gamma>1 \<longrightarrow> (x, T) \<in> set \<Gamma>2"
+
+
+text {* The proof *}
+
+lemma weakening_version1:
+ fixes \<Gamma>1 \<Gamma>2::"(name \<times> ty) list"
+ and t ::"lam"
+ and \<tau> ::"ty"
+ assumes a: "\<Gamma>1 \<turnstile> t : T"
+ and b: "valid \<Gamma>2"
+ and c: "\<Gamma>1 \<subseteq> \<Gamma>2"
+ shows "\<Gamma>2 \<turnstile> t : T"
+using a b c
+proof (nominal_induct \<Gamma>1 t T avoiding: \<Gamma>2 rule: typing.strong_induct)
+ case (t_Var \<Gamma>1 x T) (* variable case *)
+ have "\<Gamma>1 \<subseteq> \<Gamma>2" by fact
+ moreover
+ have "valid \<Gamma>2" by fact
+ moreover
+ have "(x, T) \<in> set \<Gamma>1" by fact
+ ultimately show "\<Gamma>2 \<turnstile> Var x : T" by auto
+next
+ case (t_Lam x \<Gamma>1 T1 t T2) (* lambda case *)
+ have vc: "atom x \<sharp> \<Gamma>2" by fact (* variable convention *)
+ have ih: "\<lbrakk>valid ((x, T1) # \<Gamma>2); (x, T1) # \<Gamma>1 \<subseteq> (x, T1) # \<Gamma>2\<rbrakk> \<Longrightarrow> (x, T1) # \<Gamma>2 \<turnstile> t : T2" by fact
+ have "\<Gamma>1 \<subseteq> \<Gamma>2" by fact
+ then have "(x, T1) # \<Gamma>1 \<subseteq> (x, T1) # \<Gamma>2" by simp
+ moreover
+ have "valid \<Gamma>2" by fact
+ then have "valid ((x, T1) # \<Gamma>2)" using vc by auto
+ ultimately have "(x, T1) # \<Gamma>2 \<turnstile> t : T2" using ih by simp
+ with vc show "\<Gamma>2 \<turnstile> Lam [x]. t : T1 \<rightarrow> T2" by auto
+qed (auto) (* app case *)
+
+lemma weakening_version2:
+ fixes \<Gamma>1 \<Gamma>2::"(name \<times> ty) list"
+ assumes a: "\<Gamma>1 \<turnstile> t : T"
+ and b: "valid \<Gamma>2"
+ and c: "\<Gamma>1 \<subseteq> \<Gamma>2"
+ shows "\<Gamma>2 \<turnstile> t : T"
+using a b c
+by (nominal_induct \<Gamma>1 t T avoiding: \<Gamma>2 rule: typing.strong_induct)
+ (auto | atomize)+
+
+
+text {* A version with finite sets as typing contexts *}
+
+inductive
+ valid2 :: "(name \<times> ty) fset \<Rightarrow> bool"
+where
+ v2_Empty[intro]: "valid2 {||}"
+| v2_Insert[intro]: "\<lbrakk>(x, T) |\<notin>| Gamma; valid2 Gamma\<rbrakk> \<Longrightarrow> valid2 (insert_fset (x, T) Gamma)"
+
+equivariance valid2
+
+inductive
+ typing2 :: "(name \<times> ty) fset \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow> bool" ("_ 2\<turnstile> _ : _" [60,60,60] 60)
+where
+ t2_Var[intro]: "\<lbrakk>valid2 \<Gamma>; (x, T) |\<in>| \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> 2\<turnstile> Var x : T"
+ | t2_App[intro]: "\<lbrakk>\<Gamma> 2\<turnstile> t1 : T1 \<rightarrow> T2; \<Gamma> 2\<turnstile> t2 : T1\<rbrakk> \<Longrightarrow> \<Gamma> 2\<turnstile> App t1 t2 : T2"
+ | t2_Lam[intro]: "\<lbrakk>atom x \<sharp> \<Gamma>; insert_fset (x, T1) \<Gamma> 2\<turnstile> t : T2\<rbrakk> \<Longrightarrow> \<Gamma> 2\<turnstile> Lam [x]. t : T1 \<rightarrow> T2"
+
+equivariance typing2
+
+nominal_inductive typing2
+ avoids t2_Lam: "x"
+ by (simp_all add: fresh_star_def fresh_ty lam.fresh)
+
+lemma weakening_version3:
+ fixes \<Gamma>::"(name \<times> ty) fset"
+ assumes a: "\<Gamma> 2\<turnstile> t : T"
+ and b: "(x, T') |\<notin>| \<Gamma>"
+ shows "{|(x, T')|} |\<union>| \<Gamma> 2\<turnstile> t : T"
+using a b
+apply(nominal_induct \<Gamma> t T avoiding: x rule: typing2.strong_induct)
+apply(auto)[2]
+apply(rule t2_Lam)
+apply(simp add: fresh_insert_fset fresh_Pair fresh_ty)
+apply(simp)
+apply(drule_tac x="xa" in meta_spec)
+apply(drule meta_mp)
+apply(simp add: fresh_at_base)
+apply(simp add: insert_fset_left_comm)
+done
+
+lemma weakening_version4:
+ fixes \<Gamma>::"(name \<times> ty) fset"
+ assumes a: "\<Gamma> 2\<turnstile> t : T"
+ and b: "(x, T') |\<notin>| \<Gamma>"
+ shows "{|(x, T')|} |\<union>| \<Gamma> 2\<turnstile> t : T"
+using a b
+apply(induct \<Gamma> t T arbitrary: x)
+apply(auto)[2]
+apply(rule t2_Lam)
+oops
+
+end
+
+
+