Nominal/Ex/Weakening.thy
changeset 2643 0579d3a48304
parent 2639 a8fc346deda3
child 2645 09cf78bb53d4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Ex/Weakening.thy	Thu Jan 06 13:28:40 2011 +0000
@@ -0,0 +1,158 @@
+theory Lambda
+imports "../Nominal2" 
+begin
+
+section {* The Weakening property in the simply-typed lambda-calculus *}
+
+atom_decl name
+
+nominal_datatype lam =
+  Var "name"
+| App "lam" "lam"
+| Lam x::"name" l::"lam" bind x in l ("Lam [_]. _" [100,100] 100)
+
+text {* Typing *}
+
+nominal_datatype ty =
+  TVar string
+| TFun ty ty ("_ \<rightarrow> _" [100,100] 100) 
+
+lemma fresh_ty:
+  fixes x::"name"
+  and   T::"ty"
+  shows "atom x \<sharp> T"
+  by (nominal_induct T rule: ty.strong_induct)
+     (simp_all add: ty.fresh pure_fresh)
+
+text {* Valid typing contexts *}
+
+inductive
+  valid :: "(name \<times> ty) list \<Rightarrow> bool"
+where
+  v_Nil[intro]: "valid []"
+| v_Cons[intro]: "\<lbrakk>atom x \<sharp> Gamma; valid Gamma\<rbrakk> \<Longrightarrow> valid ((x, T) # Gamma)"
+
+equivariance valid
+
+text {* Typing judgements *}
+
+inductive
+  typing :: "(name \<times> ty) list \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow> bool" ("_ \<turnstile> _ : _" [60,60,60] 60) 
+where
+    t_Var[intro]: "\<lbrakk>valid \<Gamma>; (x, T) \<in> set \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Var x : T"
+  | t_App[intro]: "\<lbrakk>\<Gamma> \<turnstile> t1 : T1 \<rightarrow> T2; \<Gamma> \<turnstile> t2 : T1\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> App t1 t2 : T2"
+  | t_Lam[intro]: "\<lbrakk>atom x \<sharp> \<Gamma>; (x, T1) # \<Gamma> \<turnstile> t : T2\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Lam [x]. t : T1 \<rightarrow> T2"
+
+equivariance typing
+
+text {* Strong induction principle for typing judgements *}
+
+nominal_inductive typing
+  avoids t_Lam: "x"
+  by (simp_all add: fresh_star_def fresh_ty lam.fresh)
+
+
+abbreviation
+  "sub_context" :: "(name \<times> ty) list \<Rightarrow> (name \<times> ty) list \<Rightarrow> bool" (infixr "\<subseteq>" 60) 
+where
+  "\<Gamma>1 \<subseteq> \<Gamma>2 \<equiv> \<forall>x T. (x, T) \<in> set \<Gamma>1 \<longrightarrow> (x, T) \<in> set \<Gamma>2"
+
+
+text {* The proof *}
+
+lemma weakening_version1: 
+  fixes \<Gamma>1 \<Gamma>2::"(name \<times> ty) list"
+  and   t ::"lam"
+  and   \<tau> ::"ty"
+  assumes a: "\<Gamma>1 \<turnstile> t : T"
+  and     b: "valid \<Gamma>2" 
+  and     c: "\<Gamma>1 \<subseteq> \<Gamma>2"
+  shows "\<Gamma>2 \<turnstile> t : T"
+using a b c
+proof (nominal_induct \<Gamma>1 t T avoiding: \<Gamma>2 rule: typing.strong_induct)
+  case (t_Var \<Gamma>1 x T)  (* variable case *)
+  have "\<Gamma>1 \<subseteq> \<Gamma>2" by fact 
+  moreover  
+  have "valid \<Gamma>2" by fact 
+  moreover 
+  have "(x, T) \<in> set \<Gamma>1" by fact
+  ultimately show "\<Gamma>2 \<turnstile> Var x : T" by auto
+next
+  case (t_Lam x \<Gamma>1 T1 t T2) (* lambda case *)
+  have vc: "atom x \<sharp> \<Gamma>2" by fact   (* variable convention *)
+  have ih: "\<lbrakk>valid ((x, T1) # \<Gamma>2); (x, T1) # \<Gamma>1 \<subseteq> (x, T1) # \<Gamma>2\<rbrakk> \<Longrightarrow> (x, T1) # \<Gamma>2 \<turnstile> t : T2" by fact
+  have "\<Gamma>1 \<subseteq> \<Gamma>2" by fact
+  then have "(x, T1) # \<Gamma>1 \<subseteq> (x, T1) # \<Gamma>2" by simp
+  moreover
+  have "valid \<Gamma>2" by fact
+  then have "valid ((x, T1) # \<Gamma>2)" using vc by auto
+  ultimately have "(x, T1) # \<Gamma>2 \<turnstile> t : T2" using ih by simp
+  with vc show "\<Gamma>2 \<turnstile> Lam [x]. t : T1 \<rightarrow> T2" by auto
+qed (auto) (* app case *)
+
+lemma weakening_version2: 
+  fixes \<Gamma>1 \<Gamma>2::"(name \<times> ty) list"
+  assumes a: "\<Gamma>1 \<turnstile> t : T" 
+  and     b: "valid \<Gamma>2" 
+  and     c: "\<Gamma>1 \<subseteq> \<Gamma>2"
+  shows "\<Gamma>2 \<turnstile> t : T"
+using a b c
+by (nominal_induct \<Gamma>1 t T avoiding: \<Gamma>2 rule: typing.strong_induct)
+   (auto | atomize)+
+
+
+text {* A version with finite sets as typing contexts *}
+
+inductive
+  valid2 :: "(name \<times> ty) fset \<Rightarrow> bool"
+where
+  v2_Empty[intro]: "valid2 {||}"
+| v2_Insert[intro]: "\<lbrakk>(x, T) |\<notin>| Gamma; valid2 Gamma\<rbrakk> \<Longrightarrow> valid2 (insert_fset (x, T) Gamma)"
+
+equivariance valid2
+
+inductive
+  typing2 :: "(name \<times> ty) fset \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow> bool" ("_ 2\<turnstile> _ : _" [60,60,60] 60) 
+where
+    t2_Var[intro]: "\<lbrakk>valid2 \<Gamma>; (x, T) |\<in>| \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> 2\<turnstile> Var x : T"
+  | t2_App[intro]: "\<lbrakk>\<Gamma> 2\<turnstile> t1 : T1 \<rightarrow> T2; \<Gamma> 2\<turnstile> t2 : T1\<rbrakk> \<Longrightarrow> \<Gamma> 2\<turnstile> App t1 t2 : T2"
+  | t2_Lam[intro]: "\<lbrakk>atom x \<sharp> \<Gamma>; insert_fset (x, T1) \<Gamma> 2\<turnstile> t : T2\<rbrakk> \<Longrightarrow> \<Gamma> 2\<turnstile> Lam [x]. t : T1 \<rightarrow> T2"
+
+equivariance typing2
+
+nominal_inductive typing2
+  avoids t2_Lam: "x"
+  by (simp_all add: fresh_star_def fresh_ty lam.fresh)
+
+lemma weakening_version3: 
+  fixes \<Gamma>::"(name \<times> ty) fset"
+  assumes a: "\<Gamma> 2\<turnstile> t : T" 
+  and     b: "(x, T') |\<notin>| \<Gamma>"
+  shows "{|(x, T')|} |\<union>| \<Gamma> 2\<turnstile> t : T"
+using a b
+apply(nominal_induct \<Gamma> t T avoiding: x rule: typing2.strong_induct)
+apply(auto)[2]
+apply(rule t2_Lam)
+apply(simp add: fresh_insert_fset fresh_Pair fresh_ty)
+apply(simp)
+apply(drule_tac x="xa" in meta_spec)
+apply(drule meta_mp)
+apply(simp add: fresh_at_base)
+apply(simp add: insert_fset_left_comm)
+done
+
+lemma weakening_version4: 
+  fixes \<Gamma>::"(name \<times> ty) fset"
+  assumes a: "\<Gamma> 2\<turnstile> t : T" 
+  and     b: "(x, T') |\<notin>| \<Gamma>"
+  shows "{|(x, T')|} |\<union>| \<Gamma> 2\<turnstile> t : T"
+using a b
+apply(induct \<Gamma> t T arbitrary: x)
+apply(auto)[2]
+apply(rule t2_Lam)
+oops
+
+end
+
+
+