Slides/Slides6.thy
changeset 2764 03de62208942
parent 2762 1a1a2b778ba2
child 2771 66ef2a2c64fb
--- a/Slides/Slides6.thy	Mon Apr 11 02:25:25 2011 +0100
+++ b/Slides/Slides6.thy	Tue Apr 12 15:46:35 2011 +0800
@@ -77,351 +77,50 @@
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
 
 *}
+
+
 text_raw {*
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   \mode<presentation>{
   \begin{frame}<1->[c]
   \frametitle{My Background}
 
+  \mbox{}\\[-10mm]
   \begin{itemize}
-  \item researcher in Theoretical Computer Science\medskip
+  \item My background is in theory and programming languages.\bigskip
+  \pause
 
-  \item programmer on a \alert<2->{software system} with 800 kloc (though I am 
-  responsible only for 35 kloc)
+  \item But I am also a programmer with a \alert<2>{software system} of around 800 kloc 
+  (though I am responsible for only appr.~35 kloc),
+
+  \item and I write papers.
   \end{itemize}
-
-  \only<2->{
-  \begin{textblock}{6}(2,11)
+  
+  \only<2>{
+  \begin{textblock}{6}(6.5,11.5)
   \begin{tikzpicture}
   \draw (0,0) node[inner sep=2mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
   {\color{darkgray}
-  \begin{minipage}{4cm}\raggedright
-  A theorem prover called {\bf Isabelle}.
-  \end{minipage}};
-  \end{tikzpicture}
-  \end{textblock}}
-
-  
-  \only<3>{
-  \begin{textblock}{6}(9,11)
-  \begin{tikzpicture}
-  \draw (0,0) node[inner sep=2mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
-  {\color{darkgray}
-  \begin{minipage}{4cm}\raggedright
-  Like every other code, this code is very hard to 
-  get correct.
+  \begin{minipage}{6.5cm}\raggedright
+  \begin{tabular}[b]{@ {}p{4.5cm}c@ {}}
+  \raggedright
+  The software is a theorem prover, called {\bf Isabelle}. 
+  & \mbox{}\hspace{-5mm}\raisebox{-14mm}{\includegraphics[scale=0.28]{isabelle1.png}}
+  \end{tabular}%
   \end{minipage}};
   \end{tikzpicture}
   \end{textblock}}
-
-  \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
-*}
-
-text_raw {*
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-  \mode<presentation>{
-  \begin{frame}<1->[t]
-  \frametitle{Regular Expressions}
-
-  An example many (should) know about:\\ 
-  \rd{\bf Regular Expressions:} 
-
-  \only<2>{
-  \begin{center}
-  \bl{[] $\;\;\;|\;\;\;$ c $\;\;\;|\;\;\;$  r$_1$$|$r$_2$  $\;\;\;|\;\;\;$  
-   r$_1$$\cdot$r$_2$ $\;\;\;|\;\;\;$ r$^*$}
-  \end{center}}
-  \only<3->{
-  \begin{center}
-  \begin{tabular}{@ {}rrll@ {}}
-  \bl{r} & \bl{$::=$}  & \bl{NULL}            & \gr{(matches no string)}\\ 
-         & \bl{$\mid$} & \bl{EMPTY}           & \gr{(matches the empty string, [])}\\ 
-         & \bl{$\mid$} & \bl{CHR c}           & \gr{(matches the character c)}\\ 
-         & \bl{$\mid$} & \bl{ALT r$_1$ r$_2$} & \gr{(alternative, r$_1 |\,$r$_2$)}\\ 
-         & \bl{$\mid$} & \bl{SEQ r$_1$ r$_2$} & \gr{(sequential, r$_1\cdot\,$r$_2$)}\\ 
-         & \bl{$\mid$} & \bl{STAR r}          & \gr{(repeat, r$^*$)}\\
-  \end{tabular}
-  \end{center}\medskip}
-
-  \small
-  \begin{textblock}{14.5}(1,12.5)
-  \only<2->{\gr{(a$\cdot$b)$^*$ \hspace{3mm}$\mapsto$\hspace{3mm} \{[], ab, abab, ababab, \ldots\}}\\}
-  \only<2->{\gr{x$\cdot$(0 $|$ 1 $|$ 2  \ldots  8 $|$ 9)$^*$ \hspace{3mm}$\mapsto$\hspace{3mm} 
-  \{x, x0, x1, \ldots, x00, \ldots, x123, \ldots\}}}
-  \end{textblock}
-  \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
-*}
-
-text_raw {*
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-  \mode<presentation>{
-  \begin{frame}<1>[c]
-  \frametitle{RegExp Matcher}
-
-  Let's implement a regular expression matcher:\bigskip
-
-  \begin{center}
+  
+  \only<4>{
+  \begin{textblock}{6}(3,11.5)
   \begin{tikzpicture}
-  %%\draw[help lines, black] (-3,0) grid (6,3);
-  
-  \draw[line width=1mm, red] (0.0,0.0) rectangle (4,2.3);
-  \node[anchor=base] at (2,1) 
-     {\small\begin{tabular}{@ {}c@ {}}\Large\bf Regular\\ 
-                                      \Large\bf Expression \\ 
-                                      \Large\bf Matcher\end{tabular}};
-  
-  \coordinate (m1) at (0,1.5);
-  \draw (-2,2) node (m2) {\small\begin{tabular}{c}\bl{regular}\\[-1mm] \bl{expression}\end{tabular}};
-  \path[overlay, ->, line width = 1mm, shorten <=-3mm] (m2) edge (m1);
-  
-  \coordinate (s1) at (0,0.5);
-  \draw (-1.8,-0) node (s2) {\small\begin{tabular}{c}\bl{string}\end{tabular}};
-  \path[overlay, ->, line width = 1mm, shorten <=-3mm] (s2) edge (s1);
-
-  \coordinate (r1) at (4,1.2);
-  \draw (6,1.2) node (r2) {\small\begin{tabular}{c}\bl{true}, \bl{false}\end{tabular}};
-  \path[overlay, ->, line width = 1mm, shorten >=-3mm] (r1) edge (r2);
-
+  \draw (0,0) node[inner sep=2mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\color{darkgray}
+  \begin{minipage}{9.6cm}\raggedright
+  So I can experience every day that writing error-free code is {\bf very, very hard}
+  and that papers are also {\bf hard} to get correct.
+  \end{minipage}};
   \end{tikzpicture}
-  \end{center}
-
-
-  \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
-*}
-
-text_raw {*
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-  \mode<presentation>{
-  \begin{frame}<1->[t]
-  \frametitle{RegExp Matcher}
-  \small
-
-  {\bf input:} a \underline{list} of RegExps and a string \hspace{6mm}{\bf output:} true or false
-
-  \only<2->{
-  \begin{center}
-  \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
-  \bl{match [] []}                   & \bl{$=$} & \bl{true}\\
-  \bl{match [] \_}                   & \bl{$=$} & \bl{false}\\
-  \bl{match (NULL::rs) s}            & \bl{$=$} & \bl{false}\\
-  \bl{match (EMPTY::rs) s}           & \bl{$=$} & \bl{match rs s}\\
-  \bl{match (CHR c::rs) (c::s)}      & \bl{$=$} & \bl{match rs s}\\         
-  \bl{match (CHR c::rs) \_}          & \bl{$=$} & \bl{false}\\    
-  \bl{match (ALT r$_1$ r$_2$::rs) s} & \bl{$=$} & \bl{match (r$_1$::rs) s}\\
-                                     &          & \bl{\;\;\;\;orelse match (r$_2$::rs) s}\\ 
-  \bl{match (SEQ r$_1$ r$_2$::rs) s} & \bl{$=$} & \bl{match (r$_1$::r$_2$::rs) s}\\
-  \bl{match (STAR r::rs) s}          & \bl{$=$} & \bl{match rs s}\\
-                                     &          & \bl{\;\;\;\;orelse match (r::STAR r::rs) s}\\
-  \end{tabular}
-  \end{center}}
-
-  \onslide<3->{we start the program with\\
-  \hspace{6mm}\bl{matches r s $=$ match [r] s}}
-
-  \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
-*}
-
-
-text_raw {*
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-  \mode<presentation>{
-  \begin{frame}<1>[c]
-  \frametitle{Program in Scala}
-
-  \bl{\footnotesize
-  \begin{tabular}{l}
-  sealed abstract class Rexp\\ 
-  sealed case class Null extends Rexp\\
-  sealed case class Empty extends Rexp\\
-  sealed case class Chr(c: Char) extends Rexp\\
-  sealed case class Alt(r1 : Rexp, r2 : Rexp) extends Rexp\\
-  sealed case class Seq(r1 : Rexp, r2 : Rexp) extends Rexp\\
-  sealed case class Star(r : Rexp) extends Rexp\medskip\\
-  def match1 (rs : List[Rexp], s : List[Char]) : Boolean = rs match \{\\
-  \hspace{3mm}case Nil @{text "\<Rightarrow>"} if (s == Nil) true else false\\
-  \hspace{3mm}case (Null()::rs) @{text "\<Rightarrow>"} false\\
-  \hspace{3mm}case (Empty()::rs) @{text "\<Rightarrow>"} match1 (rs, s)\\
-  \hspace{3mm}case (Chr(c)::rs) @{text "\<Rightarrow>"} s match \\
-  \hspace{6mm}\{ case Nil @{text "\<Rightarrow>"} false\\
-  \hspace{8mm}case (d::s) @{text "\<Rightarrow>"} if (c==d) match1 (rs,s) else false \}\\
-  \hspace{3mm}case (Alt (r1, r2)::rs) @{text "\<Rightarrow>"} match1 (r1::rs, s) || match1 (r2::rs, s)\\
-  \hspace{3mm}case (Seq (r1, r2)::rs) @{text "\<Rightarrow>"} match1 (r1::r2::rs, s) \\
-  \hspace{3mm}case (Star (r)::rs) @{text "\<Rightarrow>"} match1 (r::rs, s) || match1 (r::Star (r)::rs, s)\\
-  \}
-  \end{tabular}}
-
-  \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
-*}
-
-
-text_raw {*
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-  \mode<presentation>{
-  \begin{frame}<1->[c]
-  \frametitle{Testing}
-  
-  \small
-  Every good programmer should do thourough tests: 
-
-
-  \begin{center}
-  \begin{tabular}{@ {\hspace{-20mm}}lcl}
-  \bl{matches (a$\cdot$b)$^*\;$ []}     & \bl{$\mapsto$} & \bl{true}\\
-  \bl{matches (a$\cdot$b)$^*\;$ ab}   & \bl{$\mapsto$} & \bl{true}\\ 
-  \bl{matches (a$\cdot$b)$^*\;$ aba}  & \bl{$\mapsto$} & \bl{false}\\
-  \bl{matches (a$\cdot$b)$^*\;$ abab} & \bl{$\mapsto$} & \bl{true}\\ 
-  \bl{matches (a$\cdot$b)$^*\;$ abaa} & \bl{$\mapsto$} & \bl{false}\medskip\\
-  \onslide<2->{\bl{matches x$\cdot$(0$|$1)$^*\;$ x}   & \bl{$\mapsto$} & \bl{true}}\\
-  \onslide<2->{\bl{matches x$\cdot$(0$|$1)$^*\;$ x0}  & \bl{$\mapsto$} & \bl{true}}\\
-  \onslide<2->{\bl{matches x$\cdot$(0$|$1)$^*\;$ x3}  & \bl{$\mapsto$} & \bl{false}}
-  \end{tabular}
-  \end{center}
- 
-  \onslide<3->
-  {looks OK \ldots let's ship it to customers\hspace{5mm} 
-   \raisebox{-5mm}{\includegraphics[scale=0.05]{sun.png}}}
-  
-  \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
-*}
-
-text_raw {*
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-  \mode<presentation>{
-  \begin{frame}<1->[t]
-  \frametitle{Testing}
-
-  \begin{itemize}
-  \item While testing is an important part in the process of programming development\pause
-
-  \item we can only test a {\bf finite} amount of examples\bigskip\pause
-
-  \begin{center}
-  \colorbox{cream}
-  {\gr{\begin{minipage}{10cm}
-  ``Testing can only show the presence of errors, never their
-  absence'' (Edsger W.~Dijkstra)
-  \end{minipage}}}
-  \end{center}\bigskip\pause
-
-  \item In a theorem prover we can establish properties that apply to 
-  {\bf all} input and {\bf all} output.\pause 
-
-  \item For example we can establish that the matcher terminates 
-  on all input.
-  \end{itemize}
-
-  \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
-*}
-
-text_raw {*
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-  \mode<presentation>{
-  \begin{frame}<1->[t]
-  \frametitle{RegExp Matcher}
-
-  \small
-  We need to find a measure that gets smaller in each recursive call.\bigskip
-
-  \onslide<1->{
-  \begin{center}
-  \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-9mm}}l@ {}}
-  \bl{match [] []}                   & \bl{$=$} & \bl{true} & \onslide<2->{\ok}\\
-  \bl{match [] \_}                   & \bl{$=$} & \bl{false} & \onslide<2->{\ok}\\
-  \bl{match (NULL::rs) s}            & \bl{$=$} & \bl{false} & \onslide<2->{\ok}\\
-  \bl{match (EMPTY::rs) s}           & \bl{$=$} & \bl{match rs s} & \onslide<3->{\ok}\\
-  \bl{match (CHR c::rs) (c::s)}      & \bl{$=$} & \bl{match rs s} & \onslide<4->{\ok}\\         
-  \bl{match (CHR c::rs) \_}          & \bl{$=$} & \bl{false} & \onslide<2->{\ok}\\    
-  \bl{match (ALT r$_1$ r$_2$::rs) s} & \bl{$=$} & \bl{match (r$_1$::rs) s} & \onslide<5->{\ok}\\
-                                     &          & \bl{\;\;\;\;orelse match (r$_2$::rs) s}\\ 
-  \bl{match (SEQ r$_1$ r$_2$::rs) s} & \bl{$=$} & \bl{match (r$_1$::r$_2$::rs) s} & \onslide<6->{\ok}\\
-  \bl{match (STAR r::rs) s}          & \bl{$=$} & \bl{match rs s} & \onslide<7->{\notok}\\
-                                     &          & \bl{\;\;\;\;orelse match (r::STAR r::rs) s}\\
-  \end{tabular}
-  \end{center}}
-
-
-  \begin{textblock}{5}(4,4)
-  \begin{tikzpicture}
-  %%\draw[help lines, black] (-3,0) grid (6,3);
-  
-  \coordinate (m1) at (-2,0);
-  \coordinate (m2) at ( 2,0);
-  \path[overlay, ->, line width = 0.6mm, color = red] (m1) edge (m2);
-  \draw (0,0) node[above=-1mm] {\footnotesize\rd{needs to get smaller}};
-  \end{tikzpicture}
-  \end{textblock}
-
-
-  \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
-*}
-
-text_raw {*
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-  \mode<presentation>{
-  \begin{frame}<1->[c]
-  \frametitle{Bug Hunting}
-
-  \only<1>{Several hours later\ldots}\pause
-
-
-  \begin{center}
-  \begin{tabular}{@ {\hspace{-20mm}}lcl}
-  \bl{matches (STAR (EMPTY)) s}     & \bl{$\mapsto$} & loops\\
-  \onslide<4->{\bl{matches (STAR (EMPTY $|$ \ldots)) s}   & \bl{$\mapsto$} & loops\\} 
-  \end{tabular}
-  \end{center}
-
-  \small
-  \onslide<3->{
-  \begin{center}
-  \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
-  \ldots\\
-  \bl{match (EMPTY::rs) s}           & \bl{$=$} & \bl{match rs s}\\
-  \ldots\\
-  \bl{match (STAR r::rs) s}          & \bl{$=$} & \bl{match rs s}\\
-                                     &          & \bl{\;\;\;\;orelse match (r::STAR r::rs) s}\\
-  \end{tabular}
-  \end{center}}
-  
-
-  \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
-*}
-
-text_raw {*
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-  \mode<presentation>{
-  \begin{frame}<1->[c]
-  \frametitle{RegExp Matcher}
-  \small
-
-  \begin{center}
-  \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
-  \bl{match [] []}                   & \bl{$=$} & \bl{true}\\
-  \bl{match [] \_}                   & \bl{$=$} & \bl{false}\\
-  \bl{match (NULL::rs) s}            & \bl{$=$} & \bl{false}\\
-  \bl{match (EMPTY::rs) s}           & \bl{$=$} & \bl{match rs s}\\
-  \bl{match (CHR c::rs) (c::s)}      & \bl{$=$} & \bl{match rs s}\\         
-  \bl{match (CHR c::rs) \_}          & \bl{$=$} & \bl{false}\\    
-  \bl{match (ALT r$_1$ r$_2$::rs) s} & \bl{$=$} & \bl{match (r$_1$::rs) s}\\
-                                     &          & \bl{\;\;\;\;orelse match (r$_2$::rs) s}\\ 
-  \bl{match (SEQ r$_1$ r$_2$::rs) s} & \bl{$=$} & \bl{match (r$_1$::r$_2$::rs) s}\\
-  \bl{match (STAR r::rs) s}          & \bl{$=$} & \bl{match rs s}\\
-                                     &          & \bl{\;\;\;\;orelse match (r::STAR r::rs) s}\\
-  \end{tabular}
-  \end{center}
-
-  \only<1>{
-  \begin{textblock}{5}(4,4)
-  \largenotok
   \end{textblock}}
 
   \end{frame}}
@@ -431,308 +130,65 @@
 
 
 text_raw {*
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-  \mode<presentation>{
-  \begin{frame}<1->[t]
-  \frametitle{Second Attempt}
-
-  Can a regular expression match the empty string?
-
-  \small
-  \begin{center}
-  \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}ll@ {}}
-  \bl{nullable (NULL)}            & \bl{$=$} & \bl{false} & \onslide<2->{\ok}\\
-  \bl{nullable (EMPTY)}           & \bl{$=$} & \bl{true}  & \onslide<2->{\ok}\\
-  \bl{nullable (CHR c)}           & \bl{$=$} & \bl{false} & \onslide<2->{\ok}\\         
-  \bl{nullable (ALT r$_1$ r$_2$)} & \bl{$=$} & \bl{(nullable r$_1$) orelse (nullable r$_2$)}
-    & \onslide<2->{\ok}\\ 
-  \bl{nullable (SEQ r$_1$ r$_2$)} & \bl{$=$} & \bl{(nullable r$_1$) andalso (nullable r$_2$)}
-    & \onslide<2->{\ok}\\ 
-  \bl{nullable (STAR r)}          & \bl{$=$} & \bl{true} & \onslide<2->{\ok}\\
-  \end{tabular}
-  \end{center}
-
-  \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
-*}
-
-
-text_raw {*
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-  \mode<presentation>{
-  \begin{frame}<1->[t]
-  \frametitle{RegExp Matcher 2}
-
-  If \bl{r} matches \bl{c::s}, which regular expression can match the string \bl{s}?
-
-  \small
-  \begin{center}
-  \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}}
-  \bl{der c (NULL)}            & \bl{$=$} & \bl{NULL} & \onslide<3->{\ok}\\
-  \bl{der c (EMPTY)}           & \bl{$=$} & \bl{NULL} & \onslide<3->{\ok}\\
-  \bl{der c (CHR d)}           & \bl{$=$} & \bl{if c=d then EMPTY else NULL} & \onslide<3->{\ok}\\
-  \bl{der c (ALT r$_1$ r$_2$)} & \bl{$=$} & \bl{ALT (der c r$_1$) (der c r$_2$)} & \onslide<3->{\ok}\\ 
-  \bl{der c (SEQ r$_1$ r$_2$)} & \bl{$=$} & \bl{ALT (SEQ (der c r$_1$) r$_2$)} & \onslide<3->{\ok}\\
-       &          & \bl{\phantom{ALT} (if nullable r$_1$ then der c r$_2$ else NULL)}\\
-  \bl{der c (STAR r)}          & \bl{$=$} & \bl{SEQ (der c r) (STAR r)} & \onslide<3->{\ok}\medskip\\
-  \pause
-
-  \bl{derivative r []}     & \bl{$=$} & \bl{r} & \onslide<3->{\ok}\\
-  \bl{derivative r (c::s)} & \bl{$=$} & \bl{derivative (der c r) s} & \onslide<3->{\ok}\\
-  \end{tabular}
-  \end{center}
-
-  we call the program with\\
-  \bl{matches r s $=$ nullable (derivative r s)}
-  
-
-  \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
-*}
-
-text_raw {*
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-  \mode<presentation>{
-  \begin{frame}<1->[c]
-  \frametitle{But Now What?}
-
-  \begin{center}
-  {\usefont{T1}{ptm}{b}{N}\VERYHuge{\rd{?}}}
-  \end{center}
-
-  \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
-*}
-
-text_raw {*
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-  \mode<presentation>{
-  \begin{frame}<1->[c]
-  \frametitle{Testing}
-  
-  \small
-
-  \begin{center}
-  \begin{tabular}{@ {\hspace{-20mm}}lcl}
-  \bl{matches []$^*$ []} & \bl{$\mapsto$} & \bl{true}\\
-  \bl{matches ([]$|$a)$^*$ a}  & \bl{$\mapsto$} & \bl{true}\medskip\\
-
-  \bl{matches (a$\cdot$b)$^*\;$ []}     & \bl{$\mapsto$} & \bl{true}\\
-  \bl{matches (a$\cdot$b)$^*\;$ ab}   & \bl{$\mapsto$} & \bl{true}\\ 
-  \bl{matches (a$\cdot$b)$^*\;$ aba}  & \bl{$\mapsto$} & \bl{false}\\
-  \bl{matches (a$\cdot$b)$^*\;$ abab} & \bl{$\mapsto$} & \bl{true}\\ 
-  \bl{matches (a$\cdot$b)$^*\;$ abaa} & \bl{$\mapsto$} & \bl{false}\medskip\\
-  
-  \bl{matches x$\cdot$(0$|$1)$^*\;$ x}   & \bl{$\mapsto$} & \bl{true}\\
-  \bl{matches x$\cdot$(0$|$1)$^*\;$ x0}  & \bl{$\mapsto$} & \bl{true}\\
-  \bl{matches x$\cdot$(0$|$1)$^*\;$ x3}  & \bl{$\mapsto$} & \bl{false}
-  \end{tabular}
-  \end{center}
- 
-  
-  \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
-*}
-
-text_raw {*
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-  \mode<presentation>{
-  \begin{frame}<1->[t]
-  \frametitle{Specification}
-
-  We have to specify what it means for a regular expression to match
-  a string. 
-  %
-  \only<2>{
-  \mbox{}\\[8mm]
-  \bl{(a$\cdot$b)$^*$}\\ 
-  \hspace{7mm}\bl{$\mapsto$\hspace{3mm}\{[], ab, abab, ababab, \ldots\}}\bigskip\\
-  \bl{x$\cdot$(0 $|$ 1 $|$ 2  \ldots  8 $|$ 9 )$^*$}\\ 
-  \hspace{7mm}\bl{$\mapsto$\hspace{3mm} 
-  \{x, x0, x1, \ldots, x00, \ldots, x123, \ldots\}}}
-  %
-  \only<3->{
-  \begin{center}
-  \begin{tabular}{rcl}
-  \bl{\LL (NULL)}            & \bl{$\dn$} & \bl{\{\}}\\
-  \bl{\LL (EMPTY)}           & \bl{$\dn$} & \bl{\{[]\}}\\
-  \bl{\LL (CHR c)}           & \bl{$\dn$} & \bl{\{c\}}\\
-  \bl{\LL (ALT r$_1$ r$_2$)} & \bl{$\dn$} & \onslide<4->{\bl{\LL (r$_1$) $\cup$ \LL (r$_2$)}}\\
-  \bl{\LL (SEQ r$_1$ r$_2$)} & \bl{$\dn$} & \onslide<6->{\bl{\LL (r$_1$) ; \LL (r$_2$)}}\\
-  \bl{\LL (STAR r)}          & \bl{$\dn$} & \onslide<8->{\bl{(\LL (r))$^\star$}}\\
-  \end{tabular}
-  \end{center}}
-
-  \only<5-6>{
-  \begin{textblock}{6}(2.9,13.3)
-  \colorbox{cream}{\bl{S$_1$ ; S$_2$ $\;\dn\;$ \{ s$_1$@s$_2$ $|$ s$_1$$\in$S$_1$ $\wedge$
-                                                          s$_2$$\in$S$_2$ \}}}
-  \end{textblock}}
-
-  \only<7->{
-  \begin{textblock}{9}(4,13)
-  \colorbox{cream}{\bl{$\infer{\mbox{[]} \in \mbox{S}^\star}{}$}}\hspace{3mm}
-  \colorbox{cream}{\bl{$\infer{\mbox{s}_1\mbox{@}\mbox{s}_2 \in \mbox{S}^\star}
-                      {\mbox{s}_1 \in \mbox{S} & \mbox{s}_2 \in \mbox{S}^\star}$}}
-  \end{textblock}}
-  
-  \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
-*}
-
-text_raw {*
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-  \mode<presentation>{
-  \begin{frame}<1->[t]
-  \frametitle{Is the Matcher Error-Free?}
-
-  We expect that
-
-  \begin{center}
-  \begin{tabular}{lcl}
-  \bl{matches r s = true}  & \only<1>{\rd{$\Longrightarrow\,\,$}}\only<2>{\rd{$\Longleftarrow\,\,$}}% 
-  \only<3->{\rd{$\Longleftrightarrow$}} & \bl{s $\in$ \LL(r)}\\
-  \bl{matches r s = false} & \only<1>{\rd{$\Longrightarrow\,\,$}}\only<2>{\rd{$\Longleftarrow\,\,$}}%
-  \only<3->{\rd{$\Longleftrightarrow$}} & \bl{s $\notin$ \LL(r)}\\
-  \end{tabular}
-  \end{center}
-  \pause\pause\bigskip
-  By \alert<4->{induction}, we can {\bf prove} these properties.\bigskip
-
-  \begin{tabular}{lrcl}
-  Lemmas:  & \bl{nullable (r)}          & \bl{$\Longleftrightarrow$} & \bl{[] $\in$ \LL (r)}\\
-           & \bl{s $\in$ \LL (der c r)} & \bl{$\Longleftrightarrow$} & \bl{(c::s) $\in$ \LL (r)}\\
-  \end{tabular}
-  
-  \only<4->{
-  \begin{textblock}{3}(0.9,4.5)
-  \rd{\huge$\forall$\large{}r s.}
-  \end{textblock}}
-  \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
-*}
-
-text_raw {*
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-  \mode<presentation>{
-  \begin{frame}<1->[t]
-
-  \mbox{}\\[-2mm]
-
-  \small
-  \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}ll@ {}}
-  \bl{nullable (NULL)}            & \bl{$=$} & \bl{false} &\\
-  \bl{nullable (EMPTY)}           & \bl{$=$} & \bl{true}  &\\
-  \bl{nullable (CHR c)}           & \bl{$=$} & \bl{false} &\\
-  \bl{nullable (ALT r$_1$ r$_2$)} & \bl{$=$} & \bl{(nullable r$_1$) orelse (nullable r$_2$)} & \\ 
-  \bl{nullable (SEQ r$_1$ r$_2$)} & \bl{$=$} & \bl{(nullable r$_1$) andalso (nullable r$_2$)} & \\
-  \bl{nullable (STAR r)}          & \bl{$=$} & \bl{true} & \\
-  \end{tabular}\medskip
-
-  \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}}
-  \bl{der c (NULL)}            & \bl{$=$} & \bl{NULL} & \\
-  \bl{der c (EMPTY)}           & \bl{$=$} & \bl{NULL} & \\
-  \bl{der c (CHR d)}           & \bl{$=$} & \bl{if c=d then EMPTY else NULL} & \\
-  \bl{der c (ALT r$_1$ r$_2$)} & \bl{$=$} & \bl{ALT (der c r$_1$) (der c r$_2$)} & \\
-  \bl{der c (SEQ r$_1$ r$_2$)} & \bl{$=$} & \bl{ALT (SEQ (der c r$_1$) r$_2$)} & \\
-       &          & \bl{\phantom{ALT} (if nullable r$_1$ then der c r$_2$ else NULL)}\\
-  \bl{der c (STAR r)}          & \bl{$=$} & \bl{SEQ (der c r) (STAR r)} &\smallskip\\
-
-  \bl{derivative r []}     & \bl{$=$} & \bl{r} & \\
-  \bl{derivative r (c::s)} & \bl{$=$} & \bl{derivative (der c r) s} & \\
-  \end{tabular}\medskip
-
-  \bl{matches r s $=$ nullable (derivative r s)}
-  
-  \only<2>{
-  \begin{textblock}{8}(1.5,4)
-  \includegraphics[scale=0.3]{approved.png}
-  \end{textblock}}
-  
-
-  \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
-*}
-
-
-text_raw {*
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-  \mode<presentation>{
-  \begin{frame}<1->[c]
-  \frametitle{Interlude: TCB}
-
-  \begin{itemize}
-  \item The \alert{\bf Trusted Code Base} (TCB) is the code that can make your 
-  program behave in unintended ways (i.e.~cause bugs).\medskip
-
-  \item Typically the TCB includes: CPUs, operating systems, C-libraries,
-  device drivers, (J)VMs\ldots\bigskip
-  \pause
-
-  \item It also includes the compiler.
-  \end{itemize}
-
-  \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
-*}
-
-text_raw {*
 
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   \mode<presentation>{
-  \begin{frame}<1-3>
-  \frametitle{\LARGE\begin{tabular}{c}Hacking Compilers 
-  \end{tabular}}
-  
-  %Why is it so paramount to have a small trusted code base (TCB)?
-  \bigskip\bigskip
+  \begin{frame}
+  \frametitle{Getting Papers Correct}
+
+  \begin{minipage}{1.1\textwidth}
+  My work over the last 5 years.\\
+  {\small (in the fields of programming languages, logic and lambda-calculi)}
+  \end{minipage}\bigskip
 
-  \begin{columns}
-  \begin{column}{2.7cm}
-  \begin{minipage}{2.5cm}%
-  \begin{tabular}{c@ {}}
-  \includegraphics[scale=0.2]{ken-thompson.jpg}\\[-1.8mm]
-  \footnotesize Ken Thompson\\[-1.8mm]
-  \footnotesize Turing Award, 1983\\
-  \end{tabular}
-  \end{minipage}
-  \end{column}
-  \begin{column}{9cm}
-  \begin{tabular}{l@ {\hspace{1mm}}p{8cm}}
-  \myitemi
-  & Ken Thompson showed how to hide a Trojan Horse in a 
-  compiler \textcolor{red}{without} leaving any traces in the source code.\\[2mm]
-  \myitemi
-  & No amount of source level verification will protect 
-  you from such Thompson-hacks.\\[2mm]
+  \only<1>{
+  \mbox{}\\[15mm]
+  \begin{center}
+  \begin{tikzpicture}[node distance=0.5mm]
+  \node at (-1.0,-0.3) (proof) [double arrow, fill=gray,text=white, minimum height=2cm]{\bf Proof};
+  \node [left=of proof]{\Large\bf Specification};
+  \node [right=of proof]{\Large\bf Code};
+  \end{tikzpicture}
+  \end{center}
+  }
+  \pause
 
-  \myitemi
-  & Therefore in safety-critical systems it is important to rely 
-  on only a very small TCB.
+  \begin{tabular}{c@ {\hspace{2mm}}c}
+  \begin{tabular}{c}
+  \includegraphics[scale=0.09]{harper.jpg}\\[-2mm]
+  {\footnotesize Bob Harper}\\[-2.5mm]
+  {\footnotesize (CMU)}
   \end{tabular}
-  \end{column}
-  \end{columns}
+  \begin{tabular}{c}
+  \includegraphics[scale=0.31]{pfenning.jpg}\\[-2mm]
+  {\footnotesize Frank Pfenning}\\[-2.5mm]
+  {\footnotesize (CMU)}
+  \end{tabular} &
+
+  \begin{tabular}{p{6cm}}
+  \raggedright\small
+  \color{gray}{published a proof in ACM Transactions on Computational Logic (2005),
+  $\sim$31pp}
+  \end{tabular}\\
 
-  \only<2>{
-  \begin{textblock}{6}(4,2)
-  \begin{tikzpicture}
-  \draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
-  {\normalsize
-  \begin{minipage}{8cm}
-  \begin{quote}
-  \includegraphics[scale=0.05]{evil.png}
-  \begin{enumerate}
-  \item[1)] Assume you ship the compiler as binary and also with sources.
-  \item[2)] Make the compiler aware when it compiles itself.
-  \item[3)] Add the Trojan horse.
-  \item[4)] Compile.
-  \item[5)] Delete Trojan horse from the sources of the compiler.
-  \item[6)] Go on holiday for the rest of your life. ;o)\\[-7mm]\mbox{}
-  \end{enumerate}
-  \end{quote}
-  \end{minipage}};
-  \end{tikzpicture}
-  \end{textblock}}
+  \\[-4mm]
+  
+  \begin{tabular}{c}
+  \includegraphics[scale=0.3]{appel.jpg}\\[-2mm] 
+  {\footnotesize Andrew Appel}\\[-2.5mm]
+  {\footnotesize (Princeton)}
+  \end{tabular} &
+
+  \begin{tabular}{p{6cm}}
+  \raggedright\small
+  \color{gray}{relied on their proof in a safety critical system (proof carrying code)}
+  \end{tabular}
+
+  \end{tabular}\medskip
+
+
+  
+
 
   \end{frame}}
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
@@ -740,25 +196,14 @@
 *}
 
 text_raw {*
+
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   \mode<presentation>{
   \begin{frame}
-  \frametitle{\LARGE\begin{tabular}{c}An Example: Small TCB for\\[-2mm] 
-  A Critical Infrastructure\end{tabular}}
-  \mbox{}\\[-14mm]\mbox{}
+  \frametitle{Proof-Carrying Code}
 
-  \begin{columns}
-  \begin{column}{0.2\textwidth}
-  \begin{tabular}{@ {} c@ {}}
-  \includegraphics[scale=0.3]{appel.jpg}\\[-2mm] 
-  {\footnotesize Andrew Appel}\\[-2.5mm]
-  {\footnotesize (Princeton)}
-  \end{tabular}
-  \end{column}
-  
-  \begin{column}{0.8\textwidth}
-  \begin{textblock}{10}(4.5,3.95)
-  \begin{block}{Proof-Carrying Code}
+  \begin{textblock}{10}(2.5,2.2)
+  \begin{block}{Idea:}
   \begin{center}
   \begin{tikzpicture}
   \draw[help lines,cream] (0,0.2) grid (8,4);
@@ -784,31 +229,26 @@
   }
 
   \onslide<2>{\node at (4.0,1.3) [text=red]{\begin{tabular}{c}\bf Highly\\\bf Dangerous!\end{tabular}};}
-  % Code Developer
-  % User (runs untrusted code)
-  % transmits a proof that the code is safe
-  % 
+  
   \end{tikzpicture}
   \end{center}
   \end{block}
   \end{textblock}
-  \end{column}
-  \end{columns}
-  
-  \small\mbox{}\\[2.5cm]
+
+  \begin{textblock}{15}(2,12)
+  \small
   \begin{itemize}
-  \item<4-> TCB of the checker is $\sim$2700 lines of code (1865 loc of\\ LF definitions; 
+  \item<4-> Appel's checker is $\sim$2700 lines of code (1865 loc of\\ LF definitions; 
   803 loc in C including 2 library functions)\\[-3mm]
   \item<5-> 167 loc in C implement a type-checker
   \end{itemize}
+  \end{textblock}
 
   \end{frame}}
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
 
 *}
 
-
-
 text {*
   \tikzstyle{every node}=[node distance=25mm,text height=1.5ex, text depth=.25ex]
   \tikzstyle{node1}=[rectangle, minimum size=10mm, rounded corners=3mm, very thick, 
@@ -817,30 +257,13 @@
                      draw=red!70, top color=white, bottom color=red!50!black!20]
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   \mode<presentation>{
-  \begin{frame}[squeeze]
+  \begin{frame}<2->[squeeze]
   \frametitle{Type-Checking in LF} 
   
   \begin{columns}
-  \begin{column}{0.2\textwidth}
-  \begin{tabular}{@ {\hspace{-4mm}}c@ {}}
-  \\[-4mm]
-  \includegraphics[scale=0.1]{harper.jpg}\\[-2mm] 
-  {\footnotesize Bob Harper}\\[-2.5mm]
-  {\footnotesize (CMU)}\\[2mm]
-
-  \includegraphics[scale=0.3]{pfenning.jpg}\\[-2mm] 
-  {\footnotesize Frank Pfenning}\\[-2.5mm]
-  {\footnotesize (CMU)}\\[2mm]
-
-  \onslide<-6>{
-  {\footnotesize 31 pages in }\\[-2.5mm]
-  {\footnotesize ACM Transact.~on}\\[-2.5mm]
-  {\footnotesize Comp.~Logic.,~2005}\\}
-  \end{tabular}
-  \end{column}
-
+  
   \begin{column}{0.8\textwidth}
-  \begin{textblock}{0}(3.1,2)
+  \begin{textblock}{0}(1,2)
 
   \begin{tikzpicture}
   \matrix[ampersand replacement=\&,column sep=7mm, row sep=5mm]
@@ -884,15 +307,8 @@
   \end{column}
   \end{columns}
 
-  \only<2>{%
-  \begin{textblock}{2}(.1,12.85)
-  \begin{tikzpicture}
-  \draw[line width=1mm, red] (0,0) ellipse (1.5cm and 0.88cm);
-  \end{tikzpicture}
-  \end{textblock}
-  }
 
-  \begin{textblock}{3}(14,3.6)
+  \begin{textblock}{3}(12,3.6)
   \onslide<4->{
   \begin{tikzpicture}
   \node at (0,0) [single arrow, shape border rotate=270, fill=red,text=white]{2h};
@@ -912,10 +328,11 @@
 
 *}
 
+
 text_raw {*
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   \mode<presentation>{
-  \begin{frame}<1>[c]
+  \begin{frame}<1->[c]
   \frametitle{Theorem Provers}
 
   \begin{itemize}
@@ -924,9 +341,130 @@
   
   \item They can ensure that all cases are covered.\medskip
 
-  \item Sometimes, tedious reasoning can be automated.
-  \end{itemize}
+  \item Some reasoning can be automated. 
+  \end{itemize}\bigskip\pause
+
+  \begin{minipage}{1.1\textwidth}
+  Formal reasoning needs to be ``smooth''.\\
+  {\small (ideally as close as possible to reasoning with ``pen-and-paper'')}
+  \end{minipage}
+
+  \only<2->{
+  \begin{textblock}{3}(0.1,9.9)
+  \begin{tikzpicture}
+  \node at (0,0) [single arrow, shape border rotate=0, fill=red,text=red]{a};
+  \end{tikzpicture}
+  \end{textblock}}
+
+  
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+(*<*)
+atom_decl name
+
+nominal_datatype lam = 
+    Var "name"
+  | App "lam" "lam"
+  | Lam "\<guillemotleft>name\<guillemotright>lam" ("Lam [_]._" [100,100] 100)
+
+nominal_primrec
+  subst :: "lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam"  ("_[_::=_]")
+where
+  "(Var x)[y::=s] = (if x=y then s else (Var x))"
+| "(App t\<^isub>1 t\<^isub>2)[y::=s] = App (t\<^isub>1[y::=s]) (t\<^isub>2[y::=s])"
+| "x\<sharp>(y,s) \<Longrightarrow> (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])"
+apply(finite_guess)+
+apply(rule TrueI)+
+apply(simp add: abs_fresh)
+apply(fresh_guess)+
+done
+
+lemma  subst_eqvt[eqvt]:
+  fixes pi::"name prm"
+  shows "pi\<bullet>(t1[x::=t2]) = (pi\<bullet>t1)[(pi\<bullet>x)::=(pi\<bullet>t2)]"
+by (nominal_induct t1 avoiding: x t2 rule: lam.strong_induct)
+   (auto simp add: perm_bij fresh_atm fresh_bij)
+
+lemma fresh_fact:
+  fixes z::"name"
+  shows "\<lbrakk>z\<sharp>s; (z=y \<or> z\<sharp>t)\<rbrakk> \<Longrightarrow> z\<sharp>t[y::=s]"
+by (nominal_induct t avoiding: z y s rule: lam.strong_induct)
+   (auto simp add: abs_fresh fresh_prod fresh_atm)
+
+lemma forget: 
+  assumes asm: "x\<sharp>L"
+  shows "L[x::=P] = L"
+  using asm 
+by (nominal_induct L avoiding: x P rule: lam.strong_induct)
+   (auto simp add: abs_fresh fresh_atm)
+(*>*)
 
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}
+
+  \begin{textblock}{16}(1,1)
+  \renewcommand{\isasymbullet}{$\cdot$}
+  \tiny\color{black}
+*}
+lemma substitution_lemma_not_to_be_tried_at_home: 
+  assumes asm: "x\<noteq>y" "x\<sharp>L"
+  shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
+using asm
+proof (induct M arbitrary: x y N L rule: lam.induct)
+  case (Lam z M1) 
+  have ih: "\<And>x y N L. \<lbrakk>x\<noteq>y; x\<sharp>L\<rbrakk> \<Longrightarrow> M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
+  have "x\<noteq>y" by fact
+  have "x\<sharp>L" by fact
+  obtain z'::"name" where fc: "z'\<sharp>(x,y,z,M1,N,L)" by (rule exists_fresh) (auto simp add: fs_name1)
+  have eq: "Lam [z'].([(z',z)]\<bullet>M1) = Lam [z].M1" using fc 
+    by (auto simp add: lam.inject alpha fresh_prod fresh_atm)
+  have fc': "z'\<sharp>N[y::=L]" using fc by (simp add: fresh_fact fresh_prod)
+  have "([(z',z)]\<bullet>x) \<noteq> ([(z',z)]\<bullet>y)" using `x\<noteq>y` by (auto simp add: calc_atm)
+  moreover
+  have "([(z',z)]\<bullet>x)\<sharp>([(z',z)]\<bullet>L)" using `x\<sharp>L` by (simp add: fresh_bij)
+  ultimately 
+  have "M1[([(z',z)]\<bullet>x)::=([(z',z)]\<bullet>N)][([(z',z)]\<bullet>y)::=([(z',z)]\<bullet>L)] 
+        = M1[([(z',z)]\<bullet>y)::=([(z',z)]\<bullet>L)][([(z',z)]\<bullet>x)::=([(z',z)]\<bullet>N)[([(z',z)]\<bullet>y)::=([(z',z)]\<bullet>L)]]"
+    using ih by simp
+  then have "[(z',z)]\<bullet>(M1[([(z',z)]\<bullet>x)::=([(z',z)]\<bullet>N)][([(z',z)]\<bullet>y)::=([(z',z)]\<bullet>L)] 
+        = M1[([(z',z)]\<bullet>y)::=([(z',z)]\<bullet>L)][([(z',z)]\<bullet>x)::=([(z',z)]\<bullet>N)[([(z',z)]\<bullet>y)::=([(z',z)]\<bullet>L)]])"
+    by (simp add: perm_bool)
+  then have ih': "([(z',z)]\<bullet>M1)[x::=N][y::=L] = ([(z',z)]\<bullet>M1)[y::=L][x::=N[y::=L]]"
+    by (simp add: eqvts perm_swap)
+  show "(Lam [z].M1)[x::=N][y::=L] = (Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS") 
+  proof - 
+    have "?LHS = (Lam [z'].([(z',z)]\<bullet>M1))[x::=N][y::=L]" using eq by simp
+    also have "\<dots> = Lam [z'].(([(z',z)]\<bullet>M1)[x::=N][y::=L])" using fc by (simp add: fresh_prod)
+    also from ih have "\<dots> = Lam [z'].(([(z',z)]\<bullet>M1)[y::=L][x::=N[y::=L]])" sorry 
+    also have "\<dots> = (Lam [z'].([(z',z)]\<bullet>M1))[y::=L][x::=N[y::=L]]" using fc fc' by (simp add: fresh_prod)
+    also have "\<dots> = ?RHS" using eq by simp
+    finally show "?LHS = ?RHS" .
+  qed
+qed (auto simp add: forget)
+text_raw {*
+  \end{textblock}
+  \mbox{}
+
+  \only<2->{
+  \begin{textblock}{11.5}(4,2.3)
+  \begin{minipage}{9.3cm}
+  \begin{block}{}\footnotesize
+*}
+lemma substitution_lemma\<iota>:
+  assumes asm: "x \<noteq> y" "x \<sharp> L"
+  shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
+  using asm
+by (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
+     (auto simp add: forget fresh_fact)
+text_raw {*  
+  \end{block}
+  \end{minipage}
+  \end{textblock}}
   \end{frame}}
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
 *}
@@ -935,14 +473,63 @@
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   \mode<presentation>{
   \begin{frame}<1>[c]
-  \frametitle{Theorem Provers}
+  \frametitle{Getting Programs Correct}
+
+  \begin{center}
+  \begin{tikzpicture}[node distance=0.5mm]
+  \node at (-1.0,-0.3) (proof) [double arrow, fill=gray,text=white, minimum height=2cm]{\bf Proof};
+  \node [left=of proof]{\Large\bf Specification};
+  \node [right=of proof]{\Large\bf Code};
+  \end{tikzpicture}
+  \end{center}
+
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->[t]
+  \frametitle{Regular Expressions}
 
-  \begin{itemize}
-  \item You also pay a (sometimes heavy) price: reasoning can be much, much harder.\medskip
+  \begin{textblock}{6}(2,4)
+  \begin{tabular}{@ {}rrl}
+  \bl{r} & \bl{$::=$}  & \bl{$\varnothing$}\\
+         & \bl{$\mid$} & \bl{[]}\\
+         & \bl{$\mid$} & \bl{c}\\
+         & \bl{$\mid$} & \bl{r$_1$ + r$_2$}\\
+         & \bl{$\mid$} & \bl{r$_1$ $\cdot$ r$_2$}\\
+         & \bl{$\mid$} & \bl{r$^*$}\\
+  \end{tabular}
+  \end{textblock}
+
+  \begin{textblock}{6}(8,3.5)
+  \includegraphics[scale=0.35]{Screen1.png}
+  \end{textblock}
 
-  \item Depending on your domain, suitable reasoning infrastructure
-  might not yet be available.
-  \end{itemize}
+  \begin{textblock}{6}(10.2,2.8)
+  \footnotesize Isabelle:
+  \end{textblock}
+  
+  \only<2>{
+  \begin{textblock}{9}(3.6,11.8)
+  \bl{matches r s $\;\Longrightarrow\;$ true $\vee$ false}\\[3.5mm]
+
+  \hspace{10mm}\begin{tikzpicture}
+  \coordinate (m1) at (0.4,1);
+  \draw (0,0.3) node (m2) {\small\color{gray}rexp};
+  \path[overlay, ->, line width = 0.5mm, shorten <=-1mm, draw = gray] (m2) edge (m1);
+  
+  \coordinate (s1) at (0.81,1);
+  \draw (1.3,0.3) node (s2) {\small\color{gray} string};
+  \path[overlay, ->, line width = 0.5mm, shorten <=-1mm, draw = gray] (s2) edge (s1);
+  \end{tikzpicture}
+  \end{textblock}}
+
+
 
   \end{frame}}
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
@@ -951,17 +538,159 @@
 text_raw {*
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   \mode<presentation>{
-  \begin{frame}<1>[c]
-  \frametitle{Theorem Provers}
+  \begin{frame}<1->[t]
+  \frametitle{Specification}
+
+  \small
+  \begin{textblock}{6}(0,3.5)
+  \begin{tabular}{r@ {\hspace{0.5mm}}r@ {\hspace{1.5mm}}c@ {\hspace{1.5mm}}l}
+  \multicolumn{4}{c}{rexp $\Rightarrow$ set of strings}\bigskip\\
+  &\bl{\LL ($\varnothing$)}   & \bl{$\dn$} & \bl{$\varnothing$}\\
+  &\bl{\LL ([])}              & \bl{$\dn$} & \bl{\{[]\}}\\
+  &\bl{\LL (c)}               & \bl{$\dn$} & \bl{\{c\}}\\
+  &\bl{\LL (r$_1$ + r$_2$)}   & \bl{$\dn$} & \bl{\LL (r$_1$) $\cup$ \LL (r$_2$)}\\
+  \rd{$\Rightarrow$} &\bl{\LL (r$_1$ $\cdot$ r$_2$)} & \bl{$\dn$} & \bl{\LL (r$_1$) ;; \LL (r$_2$)}\\
+  \rd{$\Rightarrow$} &\bl{\LL (r$^*$)}           & \bl{$\dn$} & \bl{(\LL (r))$^\star$}\\
+  \end{tabular}
+  \end{textblock}
+
+  \begin{textblock}{9}(7.3,3)
+  {\mbox{}\hspace{2cm}\footnotesize Isabelle:\smallskip}
+  \includegraphics[scale=0.325]{Screen3.png}
+  \end{textblock}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->[t]
+  \frametitle{Version 1}
+  \small
+  \mbox{}\\[-8mm]\mbox{}
+
+  \begin{center}\def\arraystretch{1.05}
+  \begin{tabular}{@ {\hspace{-5mm}}l@ {\hspace{2.5mm}}c@ {\hspace{2.5mm}}l@ {}}
+  \bl{match [] []}                   & \bl{$=$} & \bl{true}\\
+  \bl{match [] (c::s)}               & \bl{$=$} & \bl{false}\\
+  \bl{match ($\varnothing$::rs) s}   & \bl{$=$} & \bl{false}\\
+  \bl{match ([]::rs) s}              & \bl{$=$} & \bl{match rs s}\\
+  \bl{match (c::rs) []}              & \bl{$=$} & \bl{false}\\
+  \bl{match (c::rs) (d::s)}          & \bl{$=$} & \bl{if c = d then match rs s else false}\\     
+  \bl{match (r$_1$ + r$_2$::rs) s} & \bl{$=$} & \bl{match (r$_1$::rs) s $\vee$ match (r$_2$::rs) s}\\ 
+  \bl{match (r$_1$ $\cdot$ r$_2$::rs) s} & \bl{$=$} & \bl{match (r$_1$::r$_2$::rs) s}\\
+  \bl{match (r$^*$::rs) s}          & \bl{$=$} & \bl{match rs s $\vee$ match (r::r$^*$::rs) s}\\
+  \end{tabular}
+  \end{center}
+
+  \begin{textblock}{9}(0.2,1.6)
+  \hspace{10mm}\begin{tikzpicture}
+  \coordinate (m1) at (0.44,-0.5);
+  \draw (0,0.3) node (m2) {\small\color{gray}\mbox{}\hspace{-9mm}list of rexps};
+  \path[overlay, ->, line width = 0.5mm, shorten <=-1mm, draw = gray] (m2) edge (m1);
+  
+  \coordinate (s1) at (0.86,-0.5);
+  \draw (1.5,0.3) node (s2) {\small\color{gray} string};
+  \path[overlay, ->, line width = 0.5mm, shorten <=-1mm, draw = gray] (s2) edge (s1);
+  \end{tikzpicture}
+  \end{textblock}
+
+  \begin{textblock}{9}(2.8,11.8)
+  \bl{matches$_1$ r s $\;=\;$ match [r] s}
+  \end{textblock}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
 
-  Recently impressive work has been accomplished proving the correctness
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->[c]
+  \frametitle{Testing}
+  
+  \small
+  Every good programmer should do thourough tests: 
+
+  \begin{center}
+  \begin{tabular}{@ {\hspace{-20mm}}lcl}
+  \bl{matches (a$\cdot$b)$^*\;$ []}     & \bl{$\mapsto$} & \bl{true}\\
+  \bl{matches (a$\cdot$b)$^*\;$ ab}   & \bl{$\mapsto$} & \bl{true}\\ 
+  \bl{matches (a$\cdot$b)$^*\;$ aba}  & \bl{$\mapsto$} & \bl{false}\\
+  \bl{matches (a$\cdot$b)$^*\;$ abab} & \bl{$\mapsto$} & \bl{true}\\ 
+  \bl{matches (a$\cdot$b)$^*\;$ abaa} & \bl{$\mapsto$} & \bl{false}\medskip\\
+  \onslide<2->{\bl{matches x$\cdot$(0$|$1)$^*\;$ x}   & \bl{$\mapsto$} & \bl{true}}\\
+  \onslide<2->{\bl{matches x$\cdot$(0$|$1)$^*\;$ x0}  & \bl{$\mapsto$} & \bl{true}}\\
+  \onslide<2->{\bl{matches x$\cdot$(0$|$1)$^*\;$ x3}  & \bl{$\mapsto$} & \bl{false}}
+  \end{tabular}
+  \end{center}
+ 
+  \onslide<3->
+  {looks OK \ldots let's ship it to customers\hspace{5mm} 
+   \raisebox{-5mm}{\includegraphics[scale=0.05]{sun.png}}}
+  
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->[c]
+  \frametitle{Version 1}
+
+  \only<1->{Several hours later\ldots}\pause
+
+
+  \begin{center}
+  \begin{tabular}{@ {\hspace{0mm}}lcl}
+  \bl{matches$_1$ []$^*$ s}     & \bl{$\mapsto$} & loops\\
+  \onslide<4->{\bl{matches$_1$ ([] + \ldots)$^*$ s}   & \bl{$\mapsto$} & loops\\} 
+  \end{tabular}
+  \end{center}
+
+  \small
+  \onslide<3->{
+  \begin{center}
+  \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
+  \ldots\\
+  \bl{match ([]::rs) s}           & \bl{$=$} & \bl{match rs s}\\
+  \ldots\\
+  \bl{match (r$^*$::rs) s}        & \bl{$=$} & \bl{match rs s $\vee$ match (r::r$^*$::rs) s}\\
+  \end{tabular}
+  \end{center}}
+  
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->[t]
+  \frametitle{Testing}
 
   \begin{itemize}
-  \item of a compiler for C-light (compiled code has the same observable
-  behaviour as the original source code),\medskip
+  \item While testing is an important part in the process of programming development\pause
+
+  \item We can only test a {\bf finite} amount of examples.\bigskip\pause
 
-  \item a mirco-kernel operating system (absence of certain 
-  bugs\ldots no nil pointers, no buffer overflows).
+  \begin{center}
+  \colorbox{cream}
+  {\gr{\begin{minipage}{10cm}
+  ``Testing can only show the presence of errors, never their
+  absence'' (Edsger W.~Dijkstra)
+  \end{minipage}}}
+  \end{center}\bigskip\pause
+
+  \item In a theorem prover we can establish properties that apply to 
+  {\bf all} input and {\bf all} output.\pause 
+
   \end{itemize}
 
   \end{frame}}
@@ -972,78 +701,91 @@
 text_raw {*
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   \mode<presentation>{
-  \begin{frame}<1>[c]
-  \frametitle{Trust in Theorem Provers}
+  \begin{frame}<1->[t]
+  \frametitle{Version 2}
+  \mbox{}\\[-14mm]\mbox{}
+
+  \small
+  \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}ll@ {}}
+  \bl{nullable ($\varnothing$)}   & \bl{$=$} & \bl{false} &\\
+  \bl{nullable ([])}              & \bl{$=$} & \bl{true}  &\\
+  \bl{nullable (c)}               & \bl{$=$} & \bl{false} &\\
+  \bl{nullable (r$_1$ + r$_2$)}   & \bl{$=$} & \bl{nullable r$_1$ $\vee$ nullable r$_2$} & \\ 
+  \bl{nullable (r$_1$ $\cdot$ r$_2$)} & \bl{$=$} & \bl{nullable r$_1$ $\wedge$ nullable r$_2$} & \\
+  \bl{nullable (r$^*$)}           & \bl{$=$} & \bl{true} & \\
+  \end{tabular}\medskip
+
+  \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}}
+  \bl{der c ($\varnothing$)}       & \bl{$=$} & \bl{$\varnothing$} & \\
+  \bl{der c ([])}                  & \bl{$=$} & \bl{$\varnothing$} & \\
+  \bl{der c (d)}                   & \bl{$=$} & \bl{if c = d then [] else $\varnothing$} & \\
+  \bl{der c (r$_1$ + r$_2$)}       & \bl{$=$} & \bl{(der c r$_1$) + (der c r$_2$)} & \\
+  \bl{der c (r$_1$ $\cdot$ r$_2$)} & \bl{$=$} & \bl{((der c r$_1$) $\cdot$ r$_2$)} & \\
+       &          & \bl{\;\;+ (if nullable r$_1$ then der c r$_2$ else $\varnothing$)}\\
+  \bl{der c (r$^*$)}          & \bl{$=$} & \bl{(der c r) $\cdot$ r$^*$} &\smallskip\\
 
-  \begin{center}
-  Why should we trust theorem provers? 
-  \end{center}
+  \bl{derivative r []}     & \bl{$=$} & \bl{r} & \\
+  \bl{derivative r (c::s)} & \bl{$=$} & \bl{derivative (der c r) s} & \\
+  \end{tabular}\medskip
+
+  \bl{matches$_2$ r s $=$ nullable (derivative r s)}
+
+  \begin{textblock}{6}(9.5,0.9)
+  \begin{flushright}
+  \color{gray}``if r matches []'' 
+  \end{flushright}
+  \end{textblock}
+
+  \begin{textblock}{6}(9.5,6.18)
+  \begin{flushright}
+  \color{gray}``derivative for a char'' 
+  \end{flushright}
+  \end{textblock}
+
+  \begin{textblock}{6}(9.5,12.1)
+  \begin{flushright}
+  \color{gray}``deriv.~for a string'' 
+  \end{flushright}
+  \end{textblock}
+
+  \begin{textblock}{6}(9.5,13.98)
+  \begin{flushright}
+  \color{gray}``main'' 
+  \end{flushright}
+  \end{textblock}
 
   \end{frame}}
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
 *}
 
 text_raw {*
-
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   \mode<presentation>{
-  \begin{frame}
-  \frametitle{Theorem Provers}
-  
-   \begin{itemize}
-  \item Theorem provers are a \textcolor{red}{special kind} of software.
-  
-  \item We do \textcolor{red}{\bf not} need to trust them; we only need to trust:
-  \end{itemize}
+  \begin{frame}<1->[t]
+  \frametitle{Is the Matcher Error-Free?}
 
-  \begin{quote}
-  \begin{itemize}
-  \item The logic they are based on \textcolor{gray}{(e.g.~HOL)}, and\smallskip
-  \item a proof checker that checks the proofs
-  \textcolor{gray}{(this can be a very small program)}.\smallskip\pause
-  \item To a little extend, we also need to trust our definitions
-  \textcolor{gray}{(this can be mitigated)}.
-  \end{itemize}
-  \end{quote}
-  
-  \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
-
-*}
-
-text_raw {*
+  We expect that
 
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-  \mode<presentation>{
-  \begin{frame}
-  \frametitle{Isabelle}
-  
-  \begin{itemize}
-  \item I am using the Isabelle theorem prover (development since 1990).\bigskip\bigskip\bigskip
-  
-  \item It follows the LCF-approach:
+  \begin{center}
+  \begin{tabular}{lcl}
+  \bl{matches$_2$ r s = true}  & \only<1>{\rd{$\Longrightarrow\,\,$}}\only<2>{\rd{$\Longleftarrow\,\,$}}% 
+  \only<3->{\rd{$\Longleftrightarrow$}} & \bl{s $\in$ \LL(r)}\\
+  \bl{matches$_2$ r s = false} & \only<1>{\rd{$\Longrightarrow\,\,$}}\only<2>{\rd{$\Longleftarrow\,\,$}}%
+  \only<3->{\rd{$\Longleftrightarrow$}} & \bl{s $\notin$ \LL(r)}\\
+  \end{tabular}
+  \end{center}
+  \pause\pause\bigskip
+  By \alert<4->{induction}, we can {\bf prove} these properties.\bigskip
+
+  \begin{tabular}{lrcl}
+  Lemmas:  & \bl{nullable (r)}          & \bl{$\Longleftrightarrow$} & \bl{[] $\in$ \LL (r)}\\
+           & \bl{s $\in$ \LL (der c r)} & \bl{$\Longleftrightarrow$} & \bl{(c::s) $\in$ \LL (r)}\\
+  \end{tabular}
   
-  \begin{itemize}
-  \item Have a special abstract type \alert{\bf thm}.
-  \item Make the constructors of this abstract type the inference rules 
-  of your logic.
-  \item Implement the theorem prover in a strongly-typed language (e.g.~ML).
-  \end{itemize}
-
-  $\Rightarrow$ everything of type {\bf thm} has been proved (even if we do not
-  have to explicitly generate proofs).
-  \end{itemize}
-  
-  \only<1>{
-  \begin{textblock}{5}(11,2.3)
-  \begin{center}
-  \includegraphics[scale=0.18]{robin-milner.jpg}\\[-0.8mm]
-  \footnotesize Robin Milner\\[-0.8mm]
-  \footnotesize Turing Award, 1991\\
-  \end{center}
+  \only<4->{
+  \begin{textblock}{3}(0.9,4.5)
+  \rd{\huge$\forall$\large{}r s.}
   \end{textblock}}
-
-  
   \end{frame}}
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
 *}
@@ -1066,29 +808,359 @@
 text_raw {*
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   \mode<presentation>{
-  \begin{frame}<1->[c]
-  \frametitle{Future Research}
+  \begin{frame}<1->[t]
+
+  \mbox{}\\[-2mm]
+
+  \small
+  \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}ll@ {}}
+  \bl{nullable (NULL)}            & \bl{$=$} & \bl{false} &\\
+  \bl{nullable (EMPTY)}           & \bl{$=$} & \bl{true}  &\\
+  \bl{nullable (CHR c)}           & \bl{$=$} & \bl{false} &\\
+  \bl{nullable (ALT r$_1$ r$_2$)} & \bl{$=$} & \bl{(nullable r$_1$) orelse (nullable r$_2$)} & \\ 
+  \bl{nullable (SEQ r$_1$ r$_2$)} & \bl{$=$} & \bl{(nullable r$_1$) andalso (nullable r$_2$)} & \\
+  \bl{nullable (STAR r)}          & \bl{$=$} & \bl{true} & \\
+  \end{tabular}\medskip
+
+  \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}}
+  \bl{der c (NULL)}            & \bl{$=$} & \bl{NULL} & \\
+  \bl{der c (EMPTY)}           & \bl{$=$} & \bl{NULL} & \\
+  \bl{der c (CHR d)}           & \bl{$=$} & \bl{if c=d then EMPTY else NULL} & \\
+  \bl{der c (ALT r$_1$ r$_2$)} & \bl{$=$} & \bl{ALT (der c r$_1$) (der c r$_2$)} & \\
+  \bl{der c (SEQ r$_1$ r$_2$)} & \bl{$=$} & \bl{ALT (SEQ (der c r$_1$) r$_2$)} & \\
+       &          & \bl{\phantom{ALT} (if nullable r$_1$ then der c r$_2$ else NULL)}\\
+  \bl{der c (STAR r)}          & \bl{$=$} & \bl{SEQ (der c r) (STAR r)} &\smallskip\\
+
+  \bl{derivative r []}     & \bl{$=$} & \bl{r} & \\
+  \bl{derivative r (c::s)} & \bl{$=$} & \bl{derivative (der c r) s} & \\
+  \end{tabular}\medskip
+
+  \bl{matches r s $=$ nullable (derivative r s)}
+  
+  \only<2>{
+  \begin{textblock}{8}(1.5,4)
+  \includegraphics[scale=0.3]{approved.png}
+  \end{textblock}}
   
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{No Automata?}
+
+  You might be wondering why I did not use any automata:
+
+  \begin{itemize}
+  \item A \alert{regular language} is one where there is a DFA that 
+  recognises it.\bigskip\pause
+  \end{itemize}
+
+
+  I can think of two reasons why this is a good definition:\medskip
+  \begin{itemize}
+  \item pumping lemma
+  \item closure properties of regular languages (closed under complement)
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[t]
+  \frametitle{Really Bad News!}
+
+  DFAs are bad news for formalisations in theorem provers. They might
+  be represented as:
+
   \begin{itemize}
-  \item Make theorem provers more like a programming environment.\medskip\pause 
+  \item graphs
+  \item matrices
+  \item partial functions
+  \end{itemize}
+
+  All constructions are messy to reason about.\bigskip\bigskip 
+  \pause
+
+  \small
+  \only<2>{
+  Constable et al needed (on and off) 18 months for a 3-person team 
+  to formalise automata theory in Nuprl including Myhill-Nerode. There is 
+  only very little other formalised work on regular languages I know of
+  in Coq, Isabelle and HOL.}
+  \only<3>{typical textbook reasoning goes like: ``\ldots if \smath{M} and \smath{N} are any two
+  automata with no inaccessible states \ldots''
+  }
+  
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE The Myhill-Nerode Theorem}
+
+  \begin{itemize}
+  \item provides necessary and suf\!ficient conditions for a language 
+  being regular (pumping lemma only necessary)\medskip
+
+  \item will help with closure properties of regular languages\bigskip\pause
+
+  \item key is the equivalence relation:\smallskip
+  \begin{center}
+  \smath{x \approx_{L} y \,\dn\, \forall z.\; x @ z \in L \Leftrightarrow y @ z \in L}
+  \end{center}
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
 
-  \item Use all the computational power we get from the hardware to
-  automate reasoning (GPUs).\medskip\pause
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE The Myhill-Nerode Theorem}
+
+  \mbox{}\\[5cm]
+
+  \begin{itemize}
+  \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_L) \;\Leftrightarrow\; L\; \text{is regular}}
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Equivalence Classes}
+
+  \begin{itemize}
+  \item \smath{L = []}
+  \begin{center}
+  \smath{\Big\{\{[]\},\; U\!N\!IV - \{[]\}\Big\}}
+  \end{center}\bigskip\bigskip
+
+  \item \smath{L = [c]}
+  \begin{center}
+  \smath{\Big\{\{[]\},\; \{[c]\},\; U\!N\!IV - \{[], [c]\}\Big\}}
+  \end{center}\bigskip\bigskip
+
+  \item \smath{L = \varnothing}
+  \begin{center}
+  \smath{\Big\{U\!N\!IV\Big\}}
+  \end{center}
+
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Regular Languages}
+
+  \begin{itemize}
+  \item \smath{L} is regular \smath{\dn} if there is an automaton \smath{M} 
+  such that \smath{\mathbb{L}(M) = L}\\[1.5cm]
 
-  \item Provide a comprehensive reasoning infrastructure for many domains and 
-  design automated decision procedures. 
-  \end{itemize}\pause
+  \item Myhill-Nerode:
 
-  
   \begin{center}
-  \colorbox{cream}{
-  \begin{minipage}{10cm} 
-  \color{gray}
+  \begin{tabular}{l}
+  finite $\Rightarrow$ regular\\
+  \;\;\;\smath{\text{finite}\,(U\!N\!IV /\!/ \approx_L) \Rightarrow \exists r. L = \mathbb{L}(r)}\\[3mm]
+  regular $\Rightarrow$ finite\\
+  \;\;\;\smath{\text{finite}\, (U\!N\!IV /\!/ \approx_{\mathbb{L}(r)})}
+  \end{tabular}
+  \end{center}
+
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Final States}
+
+  \mbox{}\\[3cm]
+
+  \begin{itemize}
+  \item \smath{\text{final}_L\,X \dn}\\
+  \smath{\hspace{6mm}X \in (U\!N\!IV /\!/\approx_L) \;\wedge\; \forall s \in X.\; s \in L}
+  \smallskip
+  \item we can prove: \smath{L = \bigcup \{X.\;\text{final}_L\,X\}}
+
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Transitions between\\[-3mm] Equivalence Classes}
+
+  \smath{L = \{[c]\}}
+
+  \begin{tabular}{@ {\hspace{-7mm}}cc}
+  \begin{tabular}{c}
+  \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick]
+  \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]
+
+  %\draw[help lines] (0,0) grid (3,2);
+
+  \node[state,initial]   (q_0)                        {$R_1$};
+  \node[state,accepting] (q_1) [above right of=q_0]   {$R_2$};
+  \node[state]           (q_2) [below right of=q_0]   {$R_3$};
+
+  \path[->] (q_0) edge                node        {c} (q_1)
+                  edge                node [swap] {$\Sigma-{c}$} (q_2)
+            (q_2) edge [loop below]   node        {$\Sigma$} ()
+            (q_1) edge                node        {$\Sigma$} (q_2);
+  \end{tikzpicture}
+  \end{tabular}
+  &
+  \begin{tabular}[t]{ll}
+  \\[-20mm]
+  \multicolumn{2}{l}{\smath{U\!N\!IV /\!/\approx_L} produces}\\[4mm]
+
+  \smath{R_1}: & \smath{\{[]\}}\\
+  \smath{R_2}: & \smath{\{[c]\}}\\
+  \smath{R_3}: & \smath{U\!N\!IV - \{[], [c]\}}\\[6mm]
+  \multicolumn{2}{l}{\onslide<2->{\smath{X \stackrel{c}{\longrightarrow} Y \dn X ; [c] \subseteq Y}}}
+  \end{tabular}
+
+  \end{tabular}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Systems of Equations}
+
+  Inspired by a method of Brzozowski\;'64, we can build an equational system
+  characterising the equivalence classes:
+
+  \begin{center}
+  \begin{tabular}{@ {\hspace{-20mm}}c}
+  \\[-13mm]
+  \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick]
+  \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]
+
+  %\draw[help lines] (0,0) grid (3,2);
+
+  \node[state,initial]   (p_0)                  {$R_1$};
+  \node[state,accepting] (p_1) [right of=q_0]   {$R_2$};
+
+  \path[->] (p_0) edge [bend left]   node        {a} (p_1)
+                  edge [loop above]   node       {b} ()
+            (p_1) edge [loop above]   node       {a} ()
+                  edge [bend left]   node        {b} (p_0);
+  \end{tikzpicture}\\
+  \\[-13mm]
+  \end{tabular}
+  \end{center}
+
+  \begin{center}
+  \begin{tabular}{@ {\hspace{-6mm}}ll@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
+  & \smath{R_1} & \smath{\equiv} & \smath{R_1;b + R_2;b \onslide<2->{\alert<2>{+ \lambda;[]}}}\\
+  & \smath{R_2} & \smath{\equiv} & \smath{R_1;a + R_2;a}\medskip\\
+  \onslide<3->{we can prove} 
+  & \onslide<3->{\smath{R_1}} & \onslide<3->{\smath{=}} 
+      & \onslide<3->{\smath{R_1; \mathbb{L}(b) \,\cup\, R_2;\mathbb{L}(b) \,\cup\, \{[]\};\{[]\}}}\\
+  & \onslide<3->{\smath{R_2}} & \onslide<3->{\smath{=}}    
+      & \onslide<3->{\smath{R_1; \mathbb{L}(a) \,\cup\, R_2;\mathbb{L}(a)}}\\
+  \end{tabular}
+  \end{center}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1>[t]
   \small
-  ``Formal methods will never have a significant impact until
-   they can be used by people that don't understand them.''\smallskip\\
-  \mbox{}\footnotesize\hfill attributed to Tom Melham
-  \end{minipage}}
+
+  \begin{center}
+  \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll}
+  \onslide<1->{\smath{R_1}} & \onslide<1->{\smath{=}} 
+      & \onslide<1->{\smath{R_1; b + R_2; b + \lambda;[]}}\\
+  \onslide<1->{\smath{R_2}} & \onslide<1->{\smath{=}}    
+      & \onslide<1->{\smath{R_1; a + R_2; a}}\\
+
+  & & & \onslide<2->{by Arden}\\
+
+  \onslide<2->{\smath{R_1}} & \onslide<2->{\smath{=}} 
+      & \onslide<2->{\smath{R_1; b + R_2; b + \lambda;[]}}\\
+  \onslide<2->{\smath{R_2}} & \onslide<2->{\smath{=}}    
+      & \only<2>{\smath{R_1; a + R_2; a}}%
+        \only<3->{\smath{R_1; a\cdot a^\star}}\\
+
+  & & & \onslide<4->{by Arden}\\
+
+  \onslide<4->{\smath{R_1}} & \onslide<4->{\smath{=}} 
+      & \onslide<4->{\smath{R_2; b \cdot b^\star+ \lambda;b^\star}}\\
+  \onslide<4->{\smath{R_2}} & \onslide<4->{\smath{=}}    
+      & \onslide<4->{\smath{R_1; a\cdot a^\star}}\\
+
+  & & & \onslide<5->{by substitution}\\
+
+  \onslide<5->{\smath{R_1}} & \onslide<5->{\smath{=}} 
+      & \onslide<5->{\smath{R_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\
+  \onslide<5->{\smath{R_2}} & \onslide<5->{\smath{=}}    
+      & \onslide<5->{\smath{R_1; a\cdot a^\star}}\\
+
+  & & & \onslide<6->{by Arden}\\
+
+  \onslide<6->{\smath{R_1}} & \onslide<6->{\smath{=}} 
+      & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\
+  \onslide<6->{\smath{R_2}} & \onslide<6->{\smath{=}}    
+      & \onslide<6->{\smath{R_1; a\cdot a^\star}}\\
+
+  & & & \onslide<7->{by substitution}\\
+
+  \onslide<7->{\smath{R_1}} & \onslide<7->{\smath{=}} 
+      & \onslide<7->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\
+  \onslide<7->{\smath{R_2}} & \onslide<7->{\smath{=}}    
+      & \onslide<7->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star 
+          \cdot a\cdot a^\star}}\\
+  \end{tabular}
   \end{center}
 
   \end{frame}}
@@ -1098,16 +1170,219 @@
 text_raw {*
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   \mode<presentation>{
-  \begin{frame}<1->[c]
-  \frametitle{Conclusion}
+  \begin{frame}[c]
+  \frametitle{\LARGE A Variant of Arden's Lemma}
+
+  {\bf Arden's Lemma:}\smallskip 
+
+  If \smath{[] \not\in A} then
+  \begin{center}
+  \smath{X = X; A + \text{something}}
+  \end{center}
+  has the (unique) solution
+  \begin{center}
+  \smath{X = \text{something} ; A^\star}
+  \end{center}
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->[t]
+  \small
+
+  \begin{center}
+  \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll}
+  \onslide<1->{\smath{R_1}} & \onslide<1->{\smath{=}} 
+      & \onslide<1->{\smath{R_1; b + R_2; b + \lambda;[]}}\\
+  \onslide<1->{\smath{R_2}} & \onslide<1->{\smath{=}}    
+      & \onslide<1->{\smath{R_1; a + R_2; a}}\\
+
+  & & & \onslide<2->{by Arden}\\
+
+  \onslide<2->{\smath{R_1}} & \onslide<2->{\smath{=}} 
+      & \onslide<2->{\smath{R_1; b + R_2; b + \lambda;[]}}\\
+  \onslide<2->{\smath{R_2}} & \onslide<2->{\smath{=}}    
+      & \only<2>{\smath{R_1; a + R_2; a}}%
+        \only<3->{\smath{R_1; a\cdot a^\star}}\\
+
+  & & & \onslide<4->{by Arden}\\
+
+  \onslide<4->{\smath{R_1}} & \onslide<4->{\smath{=}} 
+      & \onslide<4->{\smath{R_2; b \cdot b^\star+ \lambda;b^\star}}\\
+  \onslide<4->{\smath{R_2}} & \onslide<4->{\smath{=}}    
+      & \onslide<4->{\smath{R_1; a\cdot a^\star}}\\
+
+  & & & \onslide<5->{by substitution}\\
+
+  \onslide<5->{\smath{R_1}} & \onslide<5->{\smath{=}} 
+      & \onslide<5->{\smath{R_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\
+  \onslide<5->{\smath{R_2}} & \onslide<5->{\smath{=}}    
+      & \onslide<5->{\smath{R_1; a\cdot a^\star}}\\
+
+  & & & \onslide<6->{by Arden}\\
+
+  \onslide<6->{\smath{R_1}} & \onslide<6->{\smath{=}} 
+      & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\
+  \onslide<6->{\smath{R_2}} & \onslide<6->{\smath{=}}    
+      & \onslide<6->{\smath{R_1; a\cdot a^\star}}\\
+
+  & & & \onslide<7->{by substitution}\\
+
+  \onslide<7->{\smath{R_1}} & \onslide<7->{\smath{=}} 
+      & \onslide<7->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\
+  \onslide<7->{\smath{R_2}} & \onslide<7->{\smath{=}}    
+      & \onslide<7->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star 
+          \cdot a\cdot a^\star}}\\
+  \end{tabular}
+  \end{center}
+
+  \only<8->{
+  \begin{textblock}{6}(2.5,4)
+  \begin{block}{}
+  \begin{minipage}{8cm}\raggedright
   
+  \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick, inner sep=1mm]
+  \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]
+
+  %\draw[help lines] (0,0) grid (3,2);
+
+  \node[state,initial]   (p_0)                  {$R_1$};
+  \node[state,accepting] (p_1) [right of=q_0]   {$R_2$};
+
+  \path[->] (p_0) edge [bend left]   node        {a} (p_1)
+                  edge [loop above]   node       {b} ()
+            (p_1) edge [loop above]   node       {a} ()
+                  edge [bend left]   node        {b} (p_0);
+  \end{tikzpicture}
+
+  \end{minipage}
+  \end{block}
+  \end{textblock}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE The Equ's Solving Algorithm}
+
   \begin{itemize}
-  \item The plan is to make this kind of programming the ``future''.\medskip\pause
+  \item The algorithm must terminate: Arden makes one equation smaller; 
+  substitution deletes one variable from the right-hand sides.\bigskip
+
+  \item We need to maintain the invariant that Arden is applicable
+  (if \smath{[] \not\in A} then \ldots):\medskip
+
+  \begin{center}\small
+  \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll}
+  \smath{R_1} & \smath{=} & \smath{R_1; b + R_2; b + \lambda;[]}\\
+  \smath{R_2} & \smath{=} & \smath{R_1; a + R_2; a}\\
+
+  & & & by Arden\\
+
+  \smath{R_1} & \smath{=} & \smath{R_1; b + R_2; b + \lambda;[]}\\
+  \smath{R_2} & \smath{=} & \smath{R_1; a\cdot a^\star}\\
+  \end{tabular}
+  \end{center}
+
+  \end{itemize}
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Other Direction}
+
+  One has to prove
+
+  \begin{center}
+  \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r)})}
+  \end{center}
+
+  by induction on \smath{r}. Not trivial, but after a bit 
+  of thinking, one can prove that if
+
+  \begin{center}
+  \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_1)})}\hspace{5mm}
+  \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_2)})}
+  \end{center}
+
+  then
 
-  \item Though the technology is already there\\ (compiler + micro-kernel os).\medskip\pause
+  \begin{center}
+  \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_1) \,\cup\, \mathbb{L}(r_2)})}
+  \end{center}
+  
+  
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE What Have We Achieved?}
+
+  \begin{itemize}
+  \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_L) \;\Leftrightarrow\; L\; \text{is regular}}
+  \bigskip\pause
+  \item regular languages are closed under complementation; this is easy
+  \begin{center}
+  \smath{U\!N\!IV /\!/ \approx_L \;\;=\;\; U\!N\!IV /\!/ \approx_{-L}}
+  \end{center}
+  \end{itemize}
 
-  \item Logic and reasoning (especially induction) are important skills for 
-  Computer Scientists.
+  
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Examples}
+
+  \begin{itemize}
+  \item \smath{L \equiv \Sigma^\star 0 \Sigma} is regular
+  \begin{quote}\small
+  \begin{tabular}{lcl}
+  \smath{A_1} & \smath{=} & \smath{\Sigma^\star 00}\\
+  \smath{A_2} & \smath{=} & \smath{\Sigma^\star 01}\\
+  \smath{A_3} & \smath{=} & \smath{\Sigma^\star 10 \cup \{0\}}\\
+  \smath{A_4} & \smath{=} & \smath{\Sigma^\star 11 \cup \{1\} \cup \{[]\}}\\
+  \end{tabular}
+  \end{quote}
+
+  \item \smath{L \equiv \{ 0^n 1^n \,|\, n \ge 0\}} is not regular
+  \begin{quote}\small
+  \begin{tabular}{lcl}
+  \smath{B_0} & \smath{=} & \smath{\{0^n 1^n \,|\,     n \ge 0\}}\\
+  \smath{B_1} & \smath{=} & \smath{\{0^n 1^{(n-1)} \,|\, n \ge 1\}}\\
+  \smath{B_2} & \smath{=} & \smath{\{0^n 1^{(n-2)} \,|\, n \ge 2\}}\\
+  \smath{B_3} & \smath{=} & \smath{\{0^n 1^{(n-3)} \,|\, n \ge 3\}}\\
+              & \smath{\vdots} &\\
+  \end{tabular}
+  \end{quote}
   \end{itemize}
 
   \end{frame}}
@@ -1118,20 +1393,80 @@
 text_raw {*
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   \mode<presentation>{
-  \begin{frame}<1>[c]
+  \begin{frame}[c]
+  \frametitle{\LARGE What We Have Not Achieved}
+
+  \begin{itemize}
+  \item regular expressions are not good if you look for a minimal
+  one for a language (DFAs have this notion)\pause\bigskip
+
+  \item Is there anything to be said about context free languages:\medskip
+  
+  \begin{quote}
+  A context free language is where every string can be recognised by
+  a pushdown automaton.\bigskip
+  \end{quote}
+  \end{itemize}
+
+  \textcolor{gray}{\footnotesize Yes. Derivatives also work for c-f grammars. Ongoing work.}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Conclusion}
+
+  \begin{itemize}
+  \item We formalised the Myhill-Nerode theorem based on 
+  regular expressions (DFA are difficult to deal with in a theorem prover).\smallskip
+
+  \item Seems to be a common theme: algorithms need to be reformulated
+  to better suit formal treatment.\smallskip
+
+  \item The most interesting aspect is that we are able to
+  implement the matcher directly inside the theorem prover
+  (ongoing work).\smallskip
+
+  \item Parsing is a vast field and seems to offer new results. 
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1>[b]
   \frametitle{
   \begin{tabular}{c}
-  \mbox{}\\[23mm]
+  \mbox{}\\[13mm]
   \alert{\LARGE Thank you very much!}\\
   \alert{\Large Questions?}
   \end{tabular}}
-  
+
+  %\begin{center}
+  %\bf \underline{Short Bio:}
+  %\end{center}
+  %\mbox{}\\[-17mm]\mbox{}\small
+  %\begin{itemize}
+  %\item PhD in Cambridge
+  %\item Emmy-Noether Fellowship in Munich
+  %\item main results in nominal reasoning and nominal unification
+  %\end{itemize}
+
   \end{frame}}
-  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 *}
 
 
 
+
 (*<*)
 end
 (*>*)
\ No newline at end of file