Nominal/induction_schema.ML
changeset 2629 ffb5a181844b
equal deleted inserted replaced
2628:16ffbc8442ca 2629:ffb5a181844b
       
     1 (*  Title:      HOL/Tools/Function/induction_schema.ML
       
     2     Author:     Alexander Krauss, TU Muenchen
       
     3 
       
     4 A method to prove induction schemas.
       
     5 *)
       
     6 
       
     7 signature INDUCTION_SCHEMA =
       
     8 sig
       
     9   val mk_ind_tac : (int -> tactic) -> (int -> tactic) -> (int -> tactic)
       
    10                    -> Proof.context -> thm list -> tactic
       
    11   val induction_schema_tac : Proof.context -> thm list -> tactic
       
    12   val setup : theory -> theory
       
    13 end
       
    14 
       
    15 
       
    16 structure Induction_Schema : INDUCTION_SCHEMA =
       
    17 struct
       
    18 
       
    19 open Function_Lib
       
    20 
       
    21 type rec_call_info = int * (string * typ) list * term list * term list
       
    22 
       
    23 datatype scheme_case = SchemeCase of
       
    24  {bidx : int,
       
    25   qs: (string * typ) list,
       
    26   oqnames: string list,
       
    27   gs: term list,
       
    28   lhs: term list,
       
    29   rs: rec_call_info list}
       
    30 
       
    31 datatype scheme_branch = SchemeBranch of
       
    32  {P : term,
       
    33   xs: (string * typ) list,
       
    34   ws: (string * typ) list,
       
    35   Cs: term list}
       
    36 
       
    37 datatype ind_scheme = IndScheme of
       
    38  {T: typ, (* sum of products *)
       
    39   branches: scheme_branch list,
       
    40   cases: scheme_case list}
       
    41 
       
    42 val ind_atomize = Raw_Simplifier.rewrite true @{thms induct_atomize}
       
    43 val ind_rulify = Raw_Simplifier.rewrite true @{thms induct_rulify}
       
    44 
       
    45 fun meta thm = thm RS eq_reflection
       
    46 
       
    47 val sum_prod_conv = Raw_Simplifier.rewrite true
       
    48   (map meta (@{thm split_conv} :: @{thms sum.cases}))
       
    49 
       
    50 fun term_conv thy cv t =
       
    51   cv (cterm_of thy t)
       
    52   |> prop_of |> Logic.dest_equals |> snd
       
    53 
       
    54 fun mk_relT T = HOLogic.mk_setT (HOLogic.mk_prodT (T, T))
       
    55 
       
    56 fun dest_hhf ctxt t =
       
    57   let
       
    58     val ((vars, imp), ctxt') = Function_Lib.focus_term t ctxt
       
    59   in
       
    60     (ctxt', vars, Logic.strip_imp_prems imp, Logic.strip_imp_concl imp)
       
    61   end
       
    62 
       
    63 fun mk_scheme' ctxt cases concl =
       
    64   let
       
    65     fun mk_branch concl =
       
    66       let
       
    67         val (_, ws, Cs, _ $ Pxs) = dest_hhf ctxt concl
       
    68         val (P, xs) = strip_comb Pxs
       
    69       in
       
    70         SchemeBranch { P=P, xs=map dest_Free xs, ws=ws, Cs=Cs }
       
    71       end
       
    72 
       
    73     val (branches, cases') = (* correction *)
       
    74       case Logic.dest_conjunctions concl of
       
    75         [conc] =>
       
    76         let
       
    77           val _ $ Pxs = Logic.strip_assums_concl conc
       
    78           val (P, _) = strip_comb Pxs
       
    79           val (cases', conds) =
       
    80             take_prefix (Term.exists_subterm (curry op aconv P)) cases
       
    81           val concl' = fold_rev (curry Logic.mk_implies) conds conc
       
    82         in
       
    83           ([mk_branch concl'], cases')
       
    84         end
       
    85       | concls => (map mk_branch concls, cases)
       
    86 
       
    87     fun mk_case premise =
       
    88       let
       
    89         val (ctxt', qs, prems, _ $ Plhs) = dest_hhf ctxt premise
       
    90         val (P, lhs) = strip_comb Plhs
       
    91 
       
    92         fun bidx Q =
       
    93           find_index (fn SchemeBranch {P=P',...} => Q aconv P') branches
       
    94 
       
    95         fun mk_rcinfo pr =
       
    96           let
       
    97             val (_, Gvs, Gas, _ $ Phyp) = dest_hhf ctxt' pr
       
    98             val (P', rcs) = strip_comb Phyp
       
    99           in
       
   100             (bidx P', Gvs, Gas, rcs)
       
   101           end
       
   102 
       
   103         fun is_pred v = exists (fn SchemeBranch {P,...} => v aconv P) branches
       
   104 
       
   105         val (gs, rcprs) =
       
   106           take_prefix (not o Term.exists_subterm is_pred) prems
       
   107       in
       
   108         SchemeCase {bidx=bidx P, qs=qs, oqnames=map fst qs(*FIXME*),
       
   109           gs=gs, lhs=lhs, rs=map mk_rcinfo rcprs}
       
   110       end
       
   111 
       
   112     fun PT_of (SchemeBranch { xs, ...}) =
       
   113       foldr1 HOLogic.mk_prodT (map snd xs)
       
   114 
       
   115     val ST = Balanced_Tree.make (uncurry SumTree.mk_sumT) (map PT_of branches)
       
   116   in
       
   117     IndScheme {T=ST, cases=map mk_case cases', branches=branches }
       
   118   end
       
   119 
       
   120 fun mk_completeness ctxt (IndScheme {cases, branches, ...}) bidx =
       
   121   let
       
   122     val SchemeBranch { xs, ws, Cs, ... } = nth branches bidx
       
   123     val relevant_cases = filter (fn SchemeCase {bidx=bidx', ...} => bidx' = bidx) cases
       
   124 
       
   125     val allqnames = fold (fn SchemeCase {qs, ...} => fold (insert (op =) o Free) qs) relevant_cases []
       
   126     val (Pbool :: xs') = map Free (Variable.variant_frees ctxt allqnames (("P", HOLogic.boolT) :: xs))
       
   127     val Cs' = map (Pattern.rewrite_term (ProofContext.theory_of ctxt) (filter_out (op aconv) (map Free xs ~~ xs')) []) Cs
       
   128 
       
   129     fun mk_case (SchemeCase {qs, oqnames, gs, lhs, ...}) =
       
   130       HOLogic.mk_Trueprop Pbool
       
   131       |> fold_rev (fn x_l => curry Logic.mk_implies (HOLogic.mk_Trueprop(HOLogic.mk_eq x_l)))
       
   132            (xs' ~~ lhs)
       
   133       |> fold_rev (curry Logic.mk_implies) gs
       
   134       |> fold_rev mk_forall_rename (oqnames ~~ map Free qs)
       
   135   in
       
   136     HOLogic.mk_Trueprop Pbool
       
   137     |> fold_rev (curry Logic.mk_implies o mk_case) relevant_cases
       
   138     |> fold_rev (curry Logic.mk_implies) Cs'
       
   139     |> fold_rev (Logic.all o Free) ws
       
   140     |> fold_rev mk_forall_rename (map fst xs ~~ xs')
       
   141     |> mk_forall_rename ("P", Pbool)
       
   142   end
       
   143 
       
   144 fun mk_wf R (IndScheme {T, ...}) =
       
   145   HOLogic.Trueprop $ (Const (@{const_name wf}, mk_relT T --> HOLogic.boolT) $ R)
       
   146 
       
   147 fun mk_ineqs R (IndScheme {T, cases, branches}) =
       
   148   let
       
   149     fun inject i ts =
       
   150        SumTree.mk_inj T (length branches) (i + 1) (foldr1 HOLogic.mk_prod ts)
       
   151 
       
   152     val thesis = Free ("thesis", HOLogic.boolT) (* FIXME *)
       
   153 
       
   154     fun mk_pres bdx args =
       
   155       let
       
   156         val SchemeBranch { xs, ws, Cs, ... } = nth branches bdx
       
   157         fun replace (x, v) t = betapply (lambda (Free x) t, v)
       
   158         val Cs' = map (fold replace (xs ~~ args)) Cs
       
   159         val cse =
       
   160           HOLogic.mk_Trueprop thesis
       
   161           |> fold_rev (curry Logic.mk_implies) Cs'
       
   162           |> fold_rev (Logic.all o Free) ws
       
   163       in
       
   164         Logic.mk_implies (cse, HOLogic.mk_Trueprop thesis)
       
   165       end
       
   166 
       
   167     fun f (SchemeCase {bidx, qs, oqnames, gs, lhs, rs, ...}) =
       
   168       let
       
   169         fun g (bidx', Gvs, Gas, rcarg) =
       
   170           let val export =
       
   171             fold_rev (curry Logic.mk_implies) Gas
       
   172             #> fold_rev (curry Logic.mk_implies) gs
       
   173             #> fold_rev (Logic.all o Free) Gvs
       
   174             #> fold_rev mk_forall_rename (oqnames ~~ map Free qs)
       
   175           in
       
   176             (HOLogic.mk_mem (HOLogic.mk_prod (inject bidx' rcarg, inject bidx lhs), R)
       
   177              |> HOLogic.mk_Trueprop
       
   178              |> export,
       
   179              mk_pres bidx' rcarg
       
   180              |> export
       
   181              |> Logic.all thesis)
       
   182           end
       
   183       in
       
   184         map g rs
       
   185       end
       
   186   in
       
   187     map f cases
       
   188   end
       
   189 
       
   190 
       
   191 fun mk_ind_goal thy branches =
       
   192   let
       
   193     fun brnch (SchemeBranch { P, xs, ws, Cs, ... }) =
       
   194       HOLogic.mk_Trueprop (list_comb (P, map Free xs))
       
   195       |> fold_rev (curry Logic.mk_implies) Cs
       
   196       |> fold_rev (Logic.all o Free) ws
       
   197       |> term_conv thy ind_atomize
       
   198       |> Object_Logic.drop_judgment thy
       
   199       |> HOLogic.tupled_lambda (foldr1 HOLogic.mk_prod (map Free xs))
       
   200   in
       
   201     SumTree.mk_sumcases HOLogic.boolT (map brnch branches)
       
   202   end
       
   203 
       
   204 fun mk_induct_rule ctxt R x complete_thms wf_thm ineqss
       
   205   (IndScheme {T, cases=scases, branches}) =
       
   206   let
       
   207     val n = length branches
       
   208     val scases_idx = map_index I scases
       
   209 
       
   210     fun inject i ts =
       
   211       SumTree.mk_inj T n (i + 1) (foldr1 HOLogic.mk_prod ts)
       
   212     val P_of = nth (map (fn (SchemeBranch { P, ... }) => P) branches)
       
   213 
       
   214     val thy = ProofContext.theory_of ctxt
       
   215     val cert = cterm_of thy
       
   216 
       
   217     val P_comp = mk_ind_goal thy branches
       
   218 
       
   219     (* Inductive Hypothesis: !!z. (z,x):R ==> P z *)
       
   220     val ihyp = Term.all T $ Abs ("z", T,
       
   221       Logic.mk_implies
       
   222         (HOLogic.mk_Trueprop (
       
   223           Const (@{const_name Set.member}, HOLogic.mk_prodT (T, T) --> mk_relT T --> HOLogic.boolT) 
       
   224           $ (HOLogic.pair_const T T $ Bound 0 $ x)
       
   225           $ R),
       
   226          HOLogic.mk_Trueprop (P_comp $ Bound 0)))
       
   227       |> cert
       
   228 
       
   229     val aihyp = Thm.assume ihyp
       
   230 
       
   231     (* Rule for case splitting along the sum types *)
       
   232     val xss = map (fn (SchemeBranch { xs, ... }) => map Free xs) branches
       
   233     val pats = map_index (uncurry inject) xss
       
   234     val sum_split_rule =
       
   235       Pat_Completeness.prove_completeness thy [x] (P_comp $ x) xss (map single pats)
       
   236 
       
   237     fun prove_branch (bidx, (SchemeBranch { P, xs, ws, Cs, ... }, (complete_thm, pat))) =
       
   238       let
       
   239         val fxs = map Free xs
       
   240         val branch_hyp = Thm.assume (cert (HOLogic.mk_Trueprop (HOLogic.mk_eq (x, pat))))
       
   241 
       
   242         val C_hyps = map (cert #> Thm.assume) Cs
       
   243 
       
   244         val (relevant_cases, ineqss') =
       
   245           (scases_idx ~~ ineqss)
       
   246           |> filter (fn ((_, SchemeCase {bidx=bidx', ...}), _) => bidx' = bidx)
       
   247           |> split_list
       
   248 
       
   249         fun prove_case (cidx, SchemeCase {qs, gs, lhs, rs, ...}) ineq_press =
       
   250           let
       
   251             val case_hyps =
       
   252               map (Thm.assume o cert o HOLogic.mk_Trueprop o HOLogic.mk_eq) (fxs ~~ lhs)
       
   253 
       
   254             val cqs = map (cert o Free) qs
       
   255             val ags = map (Thm.assume o cert) gs
       
   256 
       
   257             val replace_x_ss = HOL_basic_ss addsimps (branch_hyp :: case_hyps)
       
   258             val sih = full_simplify replace_x_ss aihyp
       
   259 
       
   260             fun mk_Prec (idx, Gvs, Gas, rcargs) (ineq, pres) =
       
   261               let
       
   262                 val cGas = map (Thm.assume o cert) Gas
       
   263                 val cGvs = map (cert o Free) Gvs
       
   264                 val import = fold Thm.forall_elim (cqs @ cGvs)
       
   265                   #> fold Thm.elim_implies (ags @ cGas)
       
   266                 val ipres = pres
       
   267                   |> Thm.forall_elim (cert (list_comb (P_of idx, rcargs)))
       
   268                   |> import
       
   269               in
       
   270                 sih
       
   271                 |> Thm.forall_elim (cert (inject idx rcargs))
       
   272                 |> Thm.elim_implies (import ineq) (* Psum rcargs *)
       
   273                 |> Conv.fconv_rule sum_prod_conv
       
   274                 |> Conv.fconv_rule ind_rulify
       
   275                 |> (fn th => th COMP ipres) (* P rs *)
       
   276                 |> fold_rev (Thm.implies_intr o cprop_of) cGas
       
   277                 |> fold_rev Thm.forall_intr cGvs
       
   278               end
       
   279 
       
   280             val P_recs = map2 mk_Prec rs ineq_press   (*  [P rec1, P rec2, ... ]  *)
       
   281 
       
   282             val step = HOLogic.mk_Trueprop (list_comb (P, lhs))
       
   283               |> fold_rev (curry Logic.mk_implies o prop_of) P_recs
       
   284               |> fold_rev (curry Logic.mk_implies) gs
       
   285               |> fold_rev (Logic.all o Free) qs
       
   286               |> cert
       
   287 
       
   288             val Plhs_to_Pxs_conv =
       
   289               foldl1 (uncurry Conv.combination_conv)
       
   290                 (Conv.all_conv :: map (fn ch => K (Thm.symmetric (ch RS eq_reflection))) case_hyps)
       
   291 
       
   292             val res = Thm.assume step
       
   293               |> fold Thm.forall_elim cqs
       
   294               |> fold Thm.elim_implies ags
       
   295               |> fold Thm.elim_implies P_recs (* P lhs *)
       
   296               |> Conv.fconv_rule (Conv.arg_conv Plhs_to_Pxs_conv) (* P xs *)
       
   297               |> fold_rev (Thm.implies_intr o cprop_of) (ags @ case_hyps)
       
   298               |> fold_rev Thm.forall_intr cqs (* !!qs. Gas ==> xs = lhss ==> P xs *)
       
   299           in
       
   300             (res, (cidx, step))
       
   301           end
       
   302 
       
   303         val (cases, steps) = split_list (map2 prove_case relevant_cases ineqss')
       
   304 
       
   305         val bstep = complete_thm
       
   306           |> Thm.forall_elim (cert (list_comb (P, fxs)))
       
   307           |> fold (Thm.forall_elim o cert) (fxs @ map Free ws)
       
   308           |> fold Thm.elim_implies C_hyps
       
   309           |> fold Thm.elim_implies cases (* P xs *)
       
   310           |> fold_rev (Thm.implies_intr o cprop_of) C_hyps
       
   311           |> fold_rev (Thm.forall_intr o cert o Free) ws
       
   312 
       
   313         val Pxs = cert (HOLogic.mk_Trueprop (P_comp $ x))
       
   314           |> Goal.init
       
   315           |> (Simplifier.rewrite_goals_tac (map meta (branch_hyp :: @{thm split_conv} :: @{thms sum.cases}))
       
   316               THEN CONVERSION ind_rulify 1)
       
   317           |> Seq.hd
       
   318           |> Thm.elim_implies (Conv.fconv_rule Drule.beta_eta_conversion bstep)
       
   319           |> Goal.finish ctxt
       
   320           |> Thm.implies_intr (cprop_of branch_hyp)
       
   321           |> fold_rev (Thm.forall_intr o cert) fxs
       
   322       in
       
   323         (Pxs, steps)
       
   324       end
       
   325 
       
   326     val (branches, steps) =
       
   327       map_index prove_branch (branches ~~ (complete_thms ~~ pats))
       
   328       |> split_list |> apsnd flat
       
   329 
       
   330     val istep = sum_split_rule
       
   331       |> fold (fn b => fn th => Drule.compose_single (b, 1, th)) branches
       
   332       |> Thm.implies_intr ihyp
       
   333       |> Thm.forall_intr (cert x) (* "!!x. (!!y<x. P y) ==> P x" *)
       
   334 
       
   335     val induct_rule =
       
   336       @{thm "wf_induct_rule"}
       
   337       |> (curry op COMP) wf_thm
       
   338       |> (curry op COMP) istep
       
   339 
       
   340     val steps_sorted = map snd (sort (int_ord o pairself fst) steps)
       
   341   in
       
   342     (steps_sorted, induct_rule)
       
   343   end
       
   344 
       
   345 
       
   346 fun mk_ind_tac comp_tac pres_tac term_tac ctxt facts =
       
   347   (ALLGOALS (Method.insert_tac facts)) THEN HEADGOAL (SUBGOAL (fn (t, i) =>
       
   348   let
       
   349     val (ctxt', _, cases, concl) = dest_hhf ctxt t
       
   350     val scheme as IndScheme {T=ST, branches, ...} = mk_scheme' ctxt' cases concl
       
   351     val ([Rn,xn], ctxt'') = Variable.variant_fixes ["R","x"] ctxt'
       
   352     val R = Free (Rn, mk_relT ST)
       
   353     val x = Free (xn, ST)
       
   354     val cert = cterm_of (ProofContext.theory_of ctxt)
       
   355 
       
   356     val ineqss = mk_ineqs R scheme
       
   357       |> map (map (pairself (Thm.assume o cert)))
       
   358     val complete =
       
   359       map_range (mk_completeness ctxt scheme #> cert #> Thm.assume) (length branches)
       
   360     val wf_thm = mk_wf R scheme |> cert |> Thm.assume
       
   361 
       
   362     val (descent, pres) = split_list (flat ineqss)
       
   363     val newgoals = complete @ pres @ wf_thm :: descent
       
   364 
       
   365     val (steps, indthm) =
       
   366       mk_induct_rule ctxt'' R x complete wf_thm ineqss scheme
       
   367 
       
   368     fun project (i, SchemeBranch {xs, ...}) =
       
   369       let
       
   370         val inst = (foldr1 HOLogic.mk_prod (map Free xs))
       
   371           |> SumTree.mk_inj ST (length branches) (i + 1)
       
   372           |> cert
       
   373       in
       
   374         indthm
       
   375         |> Drule.instantiate' [] [SOME inst]
       
   376         |> simplify SumTree.sumcase_split_ss
       
   377         |> Conv.fconv_rule ind_rulify
       
   378       end
       
   379 
       
   380     val res = Conjunction.intr_balanced (map_index project branches)
       
   381       |> fold_rev Thm.implies_intr (map cprop_of newgoals @ steps)
       
   382       |> Drule.generalize ([], [Rn])
       
   383 
       
   384     val nbranches = length branches
       
   385     val npres = length pres
       
   386   in
       
   387     Thm.compose_no_flatten false (res, length newgoals) i
       
   388     THEN term_tac (i + nbranches + npres)
       
   389     THEN (EVERY (map (TRY o pres_tac) ((i + nbranches + npres - 1) downto (i + nbranches))))
       
   390     THEN (EVERY (map (TRY o comp_tac) ((i + nbranches - 1) downto i)))
       
   391   end))
       
   392 
       
   393 
       
   394 fun induction_schema_tac ctxt =
       
   395   mk_ind_tac (K all_tac) (assume_tac APPEND' Goal.assume_rule_tac ctxt) (K all_tac) ctxt;
       
   396 
       
   397 val setup =
       
   398   Method.setup @{binding induction_schema} (Scan.succeed (RAW_METHOD o induction_schema_tac))
       
   399     "proves an induction principle"
       
   400 
       
   401 end