equal
deleted
inserted
replaced
135 then show "R (REP a) (REP b) \<equiv> (a = b)" by simp |
135 then show "R (REP a) (REP b) \<equiv> (a = b)" by simp |
136 qed |
136 qed |
137 |
137 |
138 end |
138 end |
139 |
139 |
140 |
|
141 section {* type definition for the quotient type *} |
140 section {* type definition for the quotient type *} |
142 |
141 |
143 (* the auxiliary data for the quotient types *) |
142 (* the auxiliary data for the quotient types *) |
144 use "quotient_info.ML" |
143 use "quotient_info.ML" |
145 |
144 |
157 use "quotient.ML" |
156 use "quotient.ML" |
158 |
157 |
159 |
158 |
160 (* lifting of constants *) |
159 (* lifting of constants *) |
161 use "quotient_def.ML" |
160 use "quotient_def.ML" |
|
161 |
|
162 |
162 |
163 |
163 section {* ATOMIZE *} |
164 section {* ATOMIZE *} |
164 |
165 |
165 lemma atomize_eqv[atomize]: |
166 lemma atomize_eqv[atomize]: |
166 shows "(Trueprop A \<equiv> Trueprop B) \<equiv> (A \<equiv> B)" |
167 shows "(Trueprop A \<equiv> Trueprop B) \<equiv> (A \<equiv> B)" |