Nominal/Ex/Lambda.thy
changeset 2172 fd5eec72c3f5
parent 2170 1fe84fd8f8a4
child 2173 477293d841e8
equal deleted inserted replaced
2171:9697bbf713ec 2172:fd5eec72c3f5
   519 
   519 
   520 quotient_definition
   520 quotient_definition
   521   "match_Lam :: (atom set) \<Rightarrow> lam \<Rightarrow> (name \<times> lam) option"
   521   "match_Lam :: (atom set) \<Rightarrow> lam \<Rightarrow> (name \<times> lam) option"
   522 is match_Lam_raw
   522 is match_Lam_raw
   523 
   523 
       
   524 lemma swap_fresh:
       
   525   assumes a: "fv_lam_raw t \<sharp>* p"
       
   526   shows "alpha_lam_raw (p \<bullet> t) t"
       
   527   using a apply (induct t)
       
   528   apply (simp add: supp_at_base fresh_star_def)
       
   529   apply (rule alpha_lam_raw.intros)
       
   530   apply (metis Rep_name_inverse atom_eqvt atom_name_def fresh_perm)
       
   531   apply (simp)
       
   532   apply (simp only: fresh_star_union)
       
   533   apply clarify
       
   534   apply (rule alpha_lam_raw.intros)
       
   535   apply simp
       
   536   apply simp
       
   537   apply simp
       
   538   apply (rule alpha_lam_raw.intros)
       
   539   sorry
       
   540 
   524 lemma [quot_respect]:
   541 lemma [quot_respect]:
   525   "(op = ===> alpha_lam_raw ===> option_rel (prod_rel op = alpha_lam_raw)) match_Lam_raw match_Lam_raw"
   542   "(op = ===> alpha_lam_raw ===> option_rel (prod_rel op = alpha_lam_raw)) match_Lam_raw match_Lam_raw"
   526   proof (intro fun_relI, clarify)
   543   proof (intro fun_relI, clarify)
   527     fix S t s
   544     fix S t s
   528     assume a: "alpha_lam_raw t s"
   545     assume a: "alpha_lam_raw t s"
   549       proof
   566       proof
   550         show "?z = new (S \<union> (fv_lam_raw s - {atom y}))" by (fact h)
   567         show "?z = new (S \<union> (fv_lam_raw s - {atom y}))" by (fact h)
   551       next
   568       next
   552         have "atom y \<sharp> p" sorry
   569         have "atom y \<sharp> p" sorry
   553         have "fv_lam_raw t \<sharp>* ((x \<leftrightarrow> y) \<bullet> p)" sorry
   570         have "fv_lam_raw t \<sharp>* ((x \<leftrightarrow> y) \<bullet> p)" sorry
   554         then have "alpha_lam_raw (((x \<leftrightarrow> y) \<bullet> p) \<bullet> t) t" sorry
   571         then have "alpha_lam_raw (((x \<leftrightarrow> y) \<bullet> p) \<bullet> t) t" using swap_fresh by auto
   555         have "alpha_lam_raw (p \<bullet> t) ((x \<leftrightarrow> y) \<bullet> t)" sorry
   572         then have "alpha_lam_raw (p \<bullet> t) ((x \<leftrightarrow> y) \<bullet> t)" sorry
   556         have "alpha_lam_raw t ((x \<leftrightarrow> y) \<bullet> s)" sorry
   573         have "alpha_lam_raw t ((x \<leftrightarrow> y) \<bullet> s)" sorry
   557         then have "alpha_lam_raw ((x \<leftrightarrow> ?z) \<bullet> t) ((y \<leftrightarrow> ?z) \<bullet> s)" using eqvts(15) sorry
   574         then have "alpha_lam_raw ((x \<leftrightarrow> ?z) \<bullet> t) ((y \<leftrightarrow> ?z) \<bullet> s)" using eqvts(15) sorry
   558         then show "alpha_lam_raw ((x \<leftrightarrow> new (S \<union> (fv_lam_raw t - {atom x}))) \<bullet> t)
   575         then show "alpha_lam_raw ((x \<leftrightarrow> new (S \<union> (fv_lam_raw t - {atom x}))) \<bullet> t)
   559                   ((y \<leftrightarrow> new (S \<union> (fv_lam_raw s - {atom y}))) \<bullet> s)" unfolding h .
   576                   ((y \<leftrightarrow> new (S \<union> (fv_lam_raw s - {atom y}))) \<bullet> s)" unfolding h .
   560       qed
   577       qed
   583   prefer 3
   600   prefer 3
   584   apply (thin_tac "(name \<leftrightarrow> new (S \<union> (fv_lam lam - {atom name}))) \<bullet> lam = s")
   601   apply (thin_tac "(name \<leftrightarrow> new (S \<union> (fv_lam lam - {atom name}))) \<bullet> lam = s")
   585   apply (simp only: new_def)
   602   apply (simp only: new_def)
   586   apply (subgoal_tac "\<forall>a \<in> S. atom z \<noteq> a")
   603   apply (subgoal_tac "\<forall>a \<in> S. atom z \<noteq> a")
   587   apply (simp only: fresh_def)
   604   apply (simp only: fresh_def)
   588   
   605   (*thm supp_finite_atom_fset*)
   589   thm new_def
   606   sorry
   590   apply simp
       
   591 
       
   592 
   607 
   593 function subst where
   608 function subst where
   594 "subst v s t = (
   609 "subst v s t = (
   595   case match_Var t of Some n \<Rightarrow> if n = v then s else Var n | None \<Rightarrow>
   610   case match_Var t of Some n \<Rightarrow> if n = v then s else Var n | None \<Rightarrow>
   596   case match_App t of Some (l, r) \<Rightarrow> App (subst v s l) (subst v s r) | None \<Rightarrow>
   611   case match_App t of Some (l, r) \<Rightarrow> App (subst v s l) (subst v s r) | None \<Rightarrow>
   597   case match_Lam (supp (v,s)) t of Some (n, t) \<Rightarrow> Lam n (subst v s t) | None \<Rightarrow> undefined)"
   612   case match_Lam (supp (v,s)) t of Some (n, t) \<Rightarrow> Lam n (subst v s t) | None \<Rightarrow> undefined)"
   598 by pat_completeness auto
   613 by pat_completeness auto
   599 
   614 
   600 termination apply (relation "measure (\<lambda>(_, _, t). size t)")
   615 termination apply (relation "measure (\<lambda>(_, _, t). size t)")
   601 apply auto[1]
   616   apply auto[1]
   602 defer
   617   apply (case_tac a) apply simp
   603 apply (case_tac a) apply simp
   618   apply (frule lam_some) apply simp
   604 apply (frule app_some) apply simp
   619   apply (case_tac a) apply simp
   605 apply (case_tac a) apply simp
   620   apply (frule app_some) apply simp
   606 apply (frule app_some) apply simp
   621   apply (case_tac a) apply simp
   607 apply (case_tac a) apply simp
   622   apply (frule app_some) apply simp
   608 apply (frule lam_some)
       
   609  apply simp
       
   610 done
   623 done
   611 
   624 
   612 lemmas lam_exhaust = lam_raw.exhaust[quot_lifted]
   625 lemmas lam_exhaust = lam_raw.exhaust[quot_lifted]
   613 
   626 
   614 lemma subst_eqvt:
   627 lemma subst_eqvt:
   675         apply (simp only: lam.eq_iff)
   688         apply (simp only: lam.eq_iff)
   676         sorry
   689         sorry
   677     qed
   690     qed
   678   qed
   691   qed
   679 
   692 
   680 lemma size_no_change: "size (p \<bullet> (t :: lam_raw)) = size t"
   693 
   681   by (induct t) simp_all
   694 lemma subst_proper_eqs:
   682 
   695   "subst y s (Var x) = (if x = y then s else (Var x))"
   683 function
   696   "subst y s (App l r) = App (subst y s l) (subst y s r)"
   684   subst_raw :: "lam_raw \<Rightarrow> name \<Rightarrow> lam_raw \<Rightarrow> lam_raw"
   697   "atom x \<sharp> (t, s) \<Longrightarrow> subst y s (Lam x t) = Lam x (subst y s t)"
   685 where
   698   apply (subst subst.simps)
   686   "subst_raw (Var_raw x) y s = (if x=y then s else (Var_raw x))"
   699   apply (simp only: match_Var_simps)
   687 | "subst_raw (App_raw l r) y s = App_raw (subst_raw l y s) (subst_raw r y s)"
   700   apply (simp only: option.simps)
   688 | "subst_raw (Lam_raw x t) y s =
   701   apply (subst subst.simps)
   689       Lam_raw (new ({atom y} \<union> fv_lam_raw s \<union> fv_lam_raw t - {atom x}))
   702   apply (simp only: match_App_simps)
   690        (subst_raw ((x \<leftrightarrow> (new ({atom y} \<union> fv_lam_raw s \<union> fv_lam_raw t - {atom x}))) \<bullet> t) y s)"
   703   apply (simp only: option.simps)
   691   by (pat_completeness, auto)
   704   apply (simp only: prod.simps)
   692 termination
   705   apply (simp only: match_Var_simps)
   693   apply (relation "measure (\<lambda>(t, y, s). (size t))")
   706   apply (simp only: option.simps)
   694   apply (auto simp add: size_no_change)
   707   apply (subst subst.simps)
   695   done
   708   apply (simp only: match_Lam_simps)
   696 
   709   apply (simp only: match_Var_simps)
   697 lemma fv_subst[simp]: "fv_lam_raw (subst_raw t y s) =
   710   apply (simp only: match_App_simps)
   698   (if (atom y \<in> fv_lam_raw t) then fv_lam_raw s \<union> (fv_lam_raw t - {atom y}) else fv_lam_raw t)"
   711   apply (simp only: option.simps)
   699   apply (induct t arbitrary: s)
   712   apply (simp only: Let_def)
   700   apply (auto simp add: supp_at_base)[1]
   713   apply (simp only: option.simps)
   701   apply (auto simp add: supp_at_base)[1]
   714   apply (simp only: prod.simps)
   702   apply (simp only: fv_lam_raw.simps)
       
   703   apply simp
       
   704   apply (rule conjI)
       
   705   apply clarify
       
   706   oops
       
   707 
       
   708 lemma new_eqvt[eqvt]: "p \<bullet> (new s) = new (p \<bullet> s)"
       
   709   oops
       
   710 
       
   711 lemma subst_var_raw_eqvt[eqvt]: "p \<bullet> (subst_raw t y s) = subst_raw (p \<bullet> t) (p \<bullet> y) (p \<bullet> s)"
       
   712   apply (induct t arbitrary: p y s)
       
   713   apply simp_all
       
   714   apply(perm_simp)
       
   715   oops
       
   716 
       
   717 lemma subst_id: "alpha_lam_raw (subst_raw x d (Var_raw d)) x"
       
   718   apply (induct x arbitrary: d)
       
   719   apply (simp_all add: alpha_lam_raw.intros)
       
   720   apply (rule alpha_lam_raw.intros)
       
   721   apply (rule_tac x="(name \<leftrightarrow> new (insert (atom d) (supp d)))" in exI)
       
   722   apply (simp add: alphas)
       
   723   oops
       
   724 
       
   725 quotient_definition
       
   726   subst2 ("_ [ _ ::= _ ]" [100,100,100] 100)
       
   727 where
       
   728   "subst2 :: lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam" is "subst_raw"
       
   729 
       
   730 lemmas fv_rsp = quot_respect(10)[simplified]
       
   731 
       
   732 lemma subst_rsp_pre1:
       
   733   assumes a: "alpha_lam_raw a b"
       
   734   shows "alpha_lam_raw (subst_raw a y c) (subst_raw b y c)"
       
   735   using a
       
   736   apply (induct a b arbitrary: c y rule: alpha_lam_raw.induct)
       
   737   apply (simp add: equivp_reflp[OF lam_equivp])
       
   738   apply (simp add: alpha_lam_raw.intros)
       
   739   apply (simp only: alphas)
       
   740   apply clarify
       
   741   apply (simp only: subst_raw.simps)
       
   742   apply (rule alpha_lam_raw.intros)
       
   743   apply (simp only: alphas)
       
   744   sorry
   715   sorry
   745 
   716 
   746 lemma subst_rsp_pre2:
       
   747   assumes a: "alpha_lam_raw a b"
       
   748   shows "alpha_lam_raw (subst_raw c y a) (subst_raw c y b)"
       
   749   using a
       
   750   apply (induct c arbitrary: a b y)
       
   751   apply (simp add: equivp_reflp[OF lam_equivp])
       
   752   apply (simp add: alpha_lam_raw.intros)
       
   753   apply simp
       
   754   apply (rule alpha_lam_raw.intros)
       
   755   apply (rule_tac x="((new (insert (atom y) (fv_lam_raw a \<union> fv_lam_raw c) -
       
   756                        {atom name}))\<leftrightarrow>(new (insert (atom y) (fv_lam_raw b \<union> fv_lam_raw c) -
       
   757                         {atom name})))" in exI)
       
   758   apply (simp only: alphas)
       
   759   apply (tactic {* split_conj_tac 1 *})
       
   760   prefer 3
       
   761   sorry
       
   762 
       
   763 lemma [quot_respect]:
       
   764   "(alpha_lam_raw ===> op = ===> alpha_lam_raw ===> alpha_lam_raw) subst_raw subst_raw"
       
   765   proof (intro fun_relI, simp)
       
   766     fix a b c d :: lam_raw
       
   767     fix y :: name
       
   768     assume a: "alpha_lam_raw a b"
       
   769     assume b: "alpha_lam_raw c d"
       
   770     have c: "alpha_lam_raw (subst_raw a y c) (subst_raw b y c)" using subst_rsp_pre1 a by simp
       
   771     then have d: "alpha_lam_raw (subst_raw b y c) (subst_raw b y d)" using subst_rsp_pre2 b by simp
       
   772     show "alpha_lam_raw (subst_raw a y c) (subst_raw b y d)"
       
   773       using c d equivp_transp[OF lam_equivp] by blast
       
   774   qed
       
   775 
       
   776 lemma simp3:
       
   777   "x \<noteq> y \<Longrightarrow> atom x \<notin> fv_lam_raw s \<Longrightarrow> alpha_lam_raw (subst_raw (Lam_raw x t) y s) (Lam_raw x (subst_raw t y s))"
       
   778   apply simp
       
   779   apply (rule alpha_lam_raw.intros)
       
   780   apply (rule_tac x ="(x \<leftrightarrow> (new (insert (atom y) (fv_lam_raw s \<union> fv_lam_raw t) -
       
   781                     {atom x})))" in exI)
       
   782   apply (simp only: alphas)
       
   783   sorry
       
   784 
       
   785 lemmas subst_simps = subst_raw.simps(1-2)[quot_lifted,no_vars]
       
   786   simp3[quot_lifted,simplified lam.supp,simplified fresh_def[symmetric], no_vars]
       
   787 
       
   788 
       
   789 thm subst_raw.simps(3)[quot_lifted,no_vars]
       
   790 
       
   791 end
   717 end
   792 
   718 
   793 
   719 
   794 
   720