|
1 theory Beta |
|
2 imports |
|
3 "../Nominal2" |
|
4 begin |
|
5 |
|
6 |
|
7 atom_decl name |
|
8 |
|
9 nominal_datatype lam = |
|
10 Var "name" |
|
11 | App "lam" "lam" |
|
12 | Lam x::"name" l::"lam" binds x in l ("Lam [_]. _" [100, 100] 100) |
|
13 |
|
14 section {* capture-avoiding substitution *} |
|
15 |
|
16 nominal_primrec |
|
17 subst :: "lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam" ("_ [_ ::= _]" [90, 90, 90] 90) |
|
18 where |
|
19 "(Var x)[y ::= s] = (if x = y then s else (Var x))" |
|
20 | "(App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])" |
|
21 | "\<lbrakk>atom x \<sharp> y; atom x \<sharp> s\<rbrakk> \<Longrightarrow> (Lam [x]. t)[y ::= s] = Lam [x].(t[y ::= s])" |
|
22 unfolding eqvt_def subst_graph_def |
|
23 apply (rule, perm_simp, rule) |
|
24 apply(rule TrueI) |
|
25 apply(auto simp add: lam.distinct lam.eq_iff) |
|
26 apply(rule_tac y="a" and c="(aa, b)" in lam.strong_exhaust) |
|
27 apply(blast)+ |
|
28 apply(simp_all add: fresh_star_def fresh_Pair_elim) |
|
29 apply (erule_tac c="(ya,sa)" in Abs_lst1_fcb2) |
|
30 apply(simp_all add: Abs_fresh_iff) |
|
31 apply(simp add: fresh_star_def fresh_Pair) |
|
32 apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq) |
|
33 apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq) |
|
34 done |
|
35 |
|
36 termination (eqvt) |
|
37 by lexicographic_order |
|
38 |
|
39 lemma forget: |
|
40 shows "atom x \<sharp> t \<Longrightarrow> t[x ::= s] = t" |
|
41 by (nominal_induct t avoiding: x s rule: lam.strong_induct) |
|
42 (auto simp add: lam.fresh fresh_at_base) |
|
43 |
|
44 lemma fresh_fact: |
|
45 fixes z::"name" |
|
46 assumes a: "atom z \<sharp> s" |
|
47 and b: "z = y \<or> atom z \<sharp> t" |
|
48 shows "atom z \<sharp> t[y ::= s]" |
|
49 using a b |
|
50 by (nominal_induct t avoiding: z y s rule: lam.strong_induct) |
|
51 (auto simp add: lam.fresh fresh_at_base) |
|
52 |
|
53 lemma substitution_lemma: |
|
54 assumes a: "x \<noteq> y" "atom x \<sharp> u" |
|
55 shows "t[x ::= s][y ::= u] = t[y ::= u][x ::= s[y ::= u]]" |
|
56 using a |
|
57 by (nominal_induct t avoiding: x y s u rule: lam.strong_induct) |
|
58 (auto simp add: fresh_fact forget) |
|
59 |
|
60 inductive |
|
61 equ :: "lam \<Rightarrow> lam \<Rightarrow> bool" ("_ \<approx> _") |
|
62 where |
|
63 equ_beta: "atom x \<sharp> s \<Longrightarrow> App (Lam [x].t) s \<approx> t[x ::= s]" |
|
64 | equ_refl: "t \<approx> t" |
|
65 | equ_sym: "t \<approx> s \<Longrightarrow> s \<approx> t" |
|
66 | equ_trans: "\<lbrakk>t1 \<approx> t2; t2 \<approx> t3\<rbrakk> \<Longrightarrow> t1 \<approx> t3" |
|
67 | equ_Lam: "t \<approx> s \<Longrightarrow> Lam [x].t \<approx> Lam [x].s" |
|
68 | equ_App1: "t \<approx> s \<Longrightarrow> App t u \<approx> App s u" |
|
69 | equ_App2: "t \<approx> s \<Longrightarrow> App u t \<approx> App u s" |
|
70 |
|
71 equivariance equ |
|
72 |
|
73 nominal_inductive equ |
|
74 avoids equ_beta: "x" |
|
75 | equ_Lam: "x" |
|
76 by (simp_all add: fresh_star_def fresh_Pair lam.fresh fresh_fact) |
|
77 |
|
78 lemma [quot_respect]: |
|
79 shows "(op = ===> equ) Var Var" |
|
80 and "(equ ===> equ ===> equ) App App" |
|
81 and "(op = ===> equ ===> equ) Beta.Lam Beta.Lam" |
|
82 unfolding fun_rel_def |
|
83 by (auto intro: equ.intros) |
|
84 |
|
85 lemma equ_subst1: |
|
86 assumes "t \<approx> s" |
|
87 shows "t[x ::= u] \<approx> s[x ::= u]" |
|
88 using assms |
|
89 apply(nominal_induct avoiding: x u rule: equ.strong_induct) |
|
90 apply(simp) |
|
91 apply(rule equ_trans) |
|
92 apply(rule equ_beta) |
|
93 apply(simp add: fresh_fact) |
|
94 apply(subst (2) substitution_lemma) |
|
95 apply(simp add: fresh_at_base) |
|
96 apply(simp) |
|
97 apply(rule equ_refl) |
|
98 apply(rule equ_refl) |
|
99 apply(auto intro: equ_sym)[1] |
|
100 apply(blast intro: equ_trans) |
|
101 apply(simp add: equ_Lam) |
|
102 apply(simp add: equ_App1) |
|
103 apply(simp add: equ_App2) |
|
104 done |
|
105 |
|
106 lemma equ_subst2: |
|
107 assumes "t \<approx> s" |
|
108 shows "u[x ::= t] \<approx> u[x ::= s]" |
|
109 using assms |
|
110 apply(nominal_induct u avoiding: x t s rule: lam.strong_induct) |
|
111 apply(simp add: equ_refl) |
|
112 apply(simp) |
|
113 apply(smt equ_App1 equ_App2 equ_trans) |
|
114 apply(simp) |
|
115 apply(metis equ_Lam) |
|
116 done |
|
117 |
|
118 lemma [quot_respect]: |
|
119 shows "(equ ===> op = ===> equ ===> equ) subst subst" |
|
120 unfolding fun_rel_def |
|
121 by (metis equ_subst1 equ_subst2 equ_trans) |
|
122 |
|
123 lemma [quot_respect]: |
|
124 shows "(op = ===> equ ===> equ) permute permute" |
|
125 unfolding fun_rel_def |
|
126 by (auto intro: eqvt) |
|
127 |
|
128 quotient_type qlam = lam / equ |
|
129 apply(rule equivpI) |
|
130 apply(rule reflpI) |
|
131 apply(simp add: equ_refl) |
|
132 apply(rule sympI) |
|
133 apply(simp add: equ_sym) |
|
134 apply(rule transpI) |
|
135 apply(auto intro: equ_trans) |
|
136 done |
|
137 |
|
138 quotient_definition "QVar::name \<Rightarrow> qlam" is Var |
|
139 quotient_definition "QApp::qlam \<Rightarrow> qlam \<Rightarrow> qlam" is App |
|
140 quotient_definition QLam ("QLam [_]._") |
|
141 where "QLam::name \<Rightarrow> qlam \<Rightarrow> qlam" is Beta.Lam |
|
142 |
|
143 lemmas qlam_strong_induct = lam.strong_induct[quot_lifted] |
|
144 lemmas qlam_induct = lam.induct[quot_lifted] |
|
145 |
|
146 instantiation qlam :: pt |
|
147 begin |
|
148 |
|
149 quotient_definition "permute_qlam::perm \<Rightarrow> qlam \<Rightarrow> qlam" |
|
150 is "permute::perm \<Rightarrow> lam \<Rightarrow> lam" |
|
151 |
|
152 instance |
|
153 apply default |
|
154 apply(descending) |
|
155 apply(simp) |
|
156 apply(rule equ_refl) |
|
157 apply(descending) |
|
158 apply(simp) |
|
159 apply(rule equ_refl) |
|
160 done |
|
161 |
|
162 end |
|
163 |
|
164 lemma [eqvt]: "(p \<bullet> abs_qlam t) = abs_qlam (p \<bullet> t)" |
|
165 apply (subst fun_cong[OF fun_cong[OF meta_eq_to_obj_eq[OF permute_qlam_def]], of p, simplified]) |
|
166 apply (subst Quotient_rel[OF Quotient_qlam, simplified equivp_reflp[OF qlam_equivp], simplified]) |
|
167 by (metis Quotient_qlam equ_refl eqvt rep_abs_rsp_left) |
|
168 |
|
169 lemma supports_abs_qlam: |
|
170 "(supp t) supports (abs_qlam t)" |
|
171 unfolding supports_def |
|
172 unfolding fresh_def[symmetric] |
|
173 apply(auto) |
|
174 apply(perm_simp) |
|
175 apply(simp add: swap_fresh_fresh) |
|
176 done |
|
177 |
|
178 lemma "(p \<bullet> rep_qlam t) \<approx> rep_qlam (p \<bullet> t)" |
|
179 apply (subst fun_cong[OF fun_cong[OF meta_eq_to_obj_eq[OF permute_qlam_def]], of p, simplified]) |
|
180 apply (rule rep_abs_rsp[OF Quotient_qlam]) |
|
181 apply (rule equ_refl) |
|
182 done |
|
183 |
|
184 section {* Supp *} |
|
185 |
|
186 definition |
|
187 "Supp t = \<Inter>{supp s | s. s \<approx> t}" |
|
188 |
|
189 lemma [quot_respect]: |
|
190 shows "(equ ===> op=) Supp Supp" |
|
191 unfolding fun_rel_def |
|
192 unfolding Supp_def |
|
193 apply(rule allI)+ |
|
194 apply(rule impI) |
|
195 apply(rule_tac f="Inter" in arg_cong) |
|
196 apply(auto) |
|
197 apply (metis equ_trans) |
|
198 by (metis equivp_def qlam_equivp) |
|
199 |
|
200 quotient_definition "supp_qlam::qlam \<Rightarrow> atom set" |
|
201 is "Supp::lam \<Rightarrow> atom set" |
|
202 |
|
203 |
|
204 lemma |
|
205 fixes t::"qlam" |
|
206 shows "supp t = supp_qlam t" |
|
207 apply(descending) |
|
208 oops |
|
209 |
|
210 |
|
211 |
|
212 |
|
213 lemma [quot_respect]: |
|
214 shows "(equ ===> op=) Size Size" |
|
215 unfolding fun_rel_def |
|
216 unfolding Size_def |
|
217 apply(auto) |
|
218 apply(rule_tac f="Least" in arg_cong) |
|
219 apply(auto) |
|
220 apply (metis equ_trans) |
|
221 by (metis equivp_def qlam_equivp) |
|
222 |
|
223 |
|
224 section {* Size *} |
|
225 |
|
226 definition |
|
227 "Size t = Least {size s | s. s \<approx> t}" |
|
228 |
|
229 lemma [quot_respect]: |
|
230 shows "(equ ===> op=) Size Size" |
|
231 unfolding fun_rel_def |
|
232 unfolding Size_def |
|
233 apply(auto) |
|
234 apply(rule_tac f="Least" in arg_cong) |
|
235 apply(auto) |
|
236 apply (metis equ_trans) |
|
237 by (metis equivp_def qlam_equivp) |
|
238 |
|
239 instantiation qlam :: size |
|
240 begin |
|
241 |
|
242 quotient_definition "size_qlam::qlam \<Rightarrow> nat" |
|
243 is "Size::lam \<Rightarrow> nat" |
|
244 |
|
245 instance |
|
246 apply default |
|
247 done |
|
248 |
|
249 end |
|
250 |
|
251 thm lam.size |
|
252 |
|
253 lemma |
|
254 "size (QVar x) = 0" |
|
255 apply(descending) |
|
256 apply(simp add: Size_def) |
|
257 apply(rule Least_equality) |
|
258 apply(auto) |
|
259 apply(simp add: Collect_def) |
|
260 apply(rule_tac x="Var x" in exI) |
|
261 apply(auto intro: equ_refl) |
|
262 done |
|
263 |
|
264 lemma |
|
265 "size (QLam [x].t) = Suc (size t)" |
|
266 apply(descending) |
|
267 apply(simp add: Size_def) |
|
268 apply(auto) |
|
269 apply(rule_tac n="Suc (size t)" and m="size t" in Least_Suc2) |
|
270 apply(simp add: Collect_def) |
|
271 apply(rule_tac x="Lam [x].t" in exI) |
|
272 apply(auto intro: equ_refl)[1] |
|
273 apply(simp add: Collect_def) |
|
274 apply(rule_tac x="t" in exI) |
|
275 apply(auto intro: equ_refl)[1] |
|
276 apply(simp add: Collect_def) |
|
277 apply(auto)[1] |
|
278 defer |
|
279 apply(simp add: Collect_def) |
|
280 apply(auto)[1] |
|
281 |
|
282 apply(auto) |
|
283 done |
|
284 |
|
285 term rep_qlam |
|
286 lemmas qlam_size_def = Size_def[quot_lifted] |
|
287 |
|
288 lemma [quot_preserve]: |
|
289 assumes "Quotient equ Abs Rep" |
|
290 shows "(id ---> Rep ---> id) fresh = fresh" |
|
291 using assms |
|
292 unfolding Quotient_def |
|
293 apply(simp add: map_fun_def) |
|
294 apply(simp add: comp_def fun_eq_iff) |
|
295 |
|
296 sorry |
|
297 |
|
298 lemma [simp]: |
|
299 shows "(QVar x)[y :::= s] = (if x = y then s else (QVar x))" |
|
300 and "(QApp t1 t2)[y :::= s] = QApp (t1[y :::= s]) (t2[y :::= s])" |
|
301 and "\<lbrakk>atom x \<sharp> y; atom x \<sharp> s\<rbrakk> \<Longrightarrow> (QLam [x]. t)[y :::= s] = QLam [x].(t[y :::= s])" |
|
302 apply(lifting subst.simps(1)) |
|
303 apply(lifting subst.simps(2)) |
|
304 apply(lifting subst.simps(3)) |
|
305 done |
|
306 |
|
307 |
|
308 |
|
309 end |
|
310 |
|
311 |
|
312 |