Nominal/Ex/Let.thy
changeset 2938 faf9ad681900
parent 2932 e8ab80062061
child 2943 09834ba7ce59
equal deleted inserted replaced
2937:a56d422e17f6 2938:faf9ad681900
   278   apply (case_tac x)
   278   apply (case_tac x)
   279   apply (rule_tac y="c" and c="(a,b)" in trm_assn.strong_exhaust(1))
   279   apply (rule_tac y="c" and c="(a,b)" in trm_assn.strong_exhaust(1))
   280   apply (auto simp add: fresh_star_def)[3]
   280   apply (auto simp add: fresh_star_def)[3]
   281   apply (drule_tac x="assn" in meta_spec)
   281   apply (drule_tac x="assn" in meta_spec)
   282   apply (simp add: Abs1_eq_iff alpha_bn_refl)
   282   apply (simp add: Abs1_eq_iff alpha_bn_refl)
   283   apply auto
   283   apply simp_all[7]
       
   284   prefer 2
       
   285   apply(simp)
       
   286   apply(simp)
       
   287   apply(erule conjE)+
   284   apply (erule_tac c="(sa, ta)" in Abs_lst1_fcb2)
   288   apply (erule_tac c="(sa, ta)" in Abs_lst1_fcb2)
   285   apply (simp add: Abs_fresh_iff)
   289   apply (simp add: Abs_fresh_iff)
   286   apply (simp add: fresh_star_def)
   290   apply (simp add: fresh_star_def)
   287   apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def)[2]
   291   apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def)[2]
   288   apply (simp add: bn_apply_assn2)
   292   apply (simp add: bn_apply_assn2)
       
   293   apply(erule conjE)+
       
   294   apply(rule conjI)
   289   apply (erule_tac c="(sa, ta)" in Abs_lst_fcb2)
   295   apply (erule_tac c="(sa, ta)" in Abs_lst_fcb2)
   290   apply (simp add: fresh_star_def Abs_fresh_iff)
   296   apply (simp add: fresh_star_def Abs_fresh_iff)
   291   apply assumption+
   297   apply assumption+
   292   apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def trm_assn.fv_bn_eqvt)[2]
   298   apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def trm_assn.fv_bn_eqvt)[2]
   293   apply (erule alpha_bn_inducts)
   299   apply (erule alpha_bn_inducts)