|
1 (* Title: Nominal2_Eqvt |
|
2 Authors: Brian Huffman, Christian Urban |
|
3 |
|
4 Equivariance, Supp and Fresh Lemmas for Operators. |
|
5 *) |
|
6 theory Nominal2_Eqvt |
|
7 imports Nominal2_Base |
|
8 uses ("nominal_thmdecls.ML") |
|
9 begin |
|
10 |
|
11 section {* Logical Operators *} |
|
12 |
|
13 lemma eq_eqvt: |
|
14 shows "p \<bullet> (x = y) \<longleftrightarrow> (p \<bullet> x) = (p \<bullet> y)" |
|
15 unfolding permute_eq_iff permute_bool_def .. |
|
16 |
|
17 lemma if_eqvt: |
|
18 shows "p \<bullet> (if b then x else y) = (if p \<bullet> b then p \<bullet> x else p \<bullet> y)" |
|
19 by (simp add: permute_fun_def permute_bool_def) |
|
20 |
|
21 lemma True_eqvt: |
|
22 shows "p \<bullet> True = True" |
|
23 unfolding permute_bool_def .. |
|
24 |
|
25 lemma False_eqvt: |
|
26 shows "p \<bullet> False = False" |
|
27 unfolding permute_bool_def .. |
|
28 |
|
29 lemma imp_eqvt: |
|
30 shows "p \<bullet> (A \<longrightarrow> B) = ((p \<bullet> A) \<longrightarrow> (p \<bullet> B))" |
|
31 by (simp add: permute_bool_def) |
|
32 |
|
33 lemma conj_eqvt: |
|
34 shows "p \<bullet> (A \<and> B) = ((p \<bullet> A) \<and> (p \<bullet> B))" |
|
35 by (simp add: permute_bool_def) |
|
36 |
|
37 lemma disj_eqvt: |
|
38 shows "p \<bullet> (A \<or> B) = ((p \<bullet> A) \<or> (p \<bullet> B))" |
|
39 by (simp add: permute_bool_def) |
|
40 |
|
41 lemma Not_eqvt: |
|
42 shows "p \<bullet> (\<not> A) = (\<not> (p \<bullet> A))" |
|
43 by (simp add: permute_bool_def) |
|
44 |
|
45 lemma all_eqvt: |
|
46 shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. p \<bullet> P (- p \<bullet> x))" |
|
47 unfolding permute_fun_def permute_bool_def |
|
48 by (auto, drule_tac x="p \<bullet> x" in spec, simp) |
|
49 |
|
50 lemma ex_eqvt: |
|
51 shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. p \<bullet> P (- p \<bullet> x))" |
|
52 unfolding permute_fun_def permute_bool_def |
|
53 by (auto, rule_tac x="p \<bullet> x" in exI, simp) |
|
54 |
|
55 lemma ex1_eqvt: |
|
56 shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. p \<bullet> P (- p \<bullet> x))" |
|
57 unfolding Ex1_def ex_eqvt conj_eqvt all_eqvt imp_eqvt eq_eqvt |
|
58 by simp |
|
59 |
|
60 lemma the_eqvt: |
|
61 assumes unique: "\<exists>!x. P x" |
|
62 shows "p \<bullet> (THE x. P x) = (THE x. p \<bullet> P (- p \<bullet> x))" |
|
63 apply(rule the1_equality [symmetric]) |
|
64 apply(simp add: ex1_eqvt[symmetric]) |
|
65 apply(simp add: permute_bool_def unique) |
|
66 apply(simp add: permute_bool_def) |
|
67 apply(rule theI'[OF unique]) |
|
68 done |
|
69 |
|
70 section {* Set Operations *} |
|
71 |
|
72 lemma mem_eqvt: |
|
73 shows "p \<bullet> (x \<in> A) \<longleftrightarrow> (p \<bullet> x) \<in> (p \<bullet> A)" |
|
74 unfolding mem_def permute_fun_def by simp |
|
75 |
|
76 lemma not_mem_eqvt: |
|
77 shows "p \<bullet> (x \<notin> A) \<longleftrightarrow> (p \<bullet> x) \<notin> (p \<bullet> A)" |
|
78 unfolding mem_def permute_fun_def by (simp add: Not_eqvt) |
|
79 |
|
80 lemma Collect_eqvt: |
|
81 shows "p \<bullet> {x. P x} = {x. p \<bullet> (P (-p \<bullet> x))}" |
|
82 unfolding Collect_def permute_fun_def .. |
|
83 |
|
84 lemma empty_eqvt: |
|
85 shows "p \<bullet> {} = {}" |
|
86 unfolding empty_def Collect_eqvt False_eqvt .. |
|
87 |
|
88 lemma supp_set_empty: |
|
89 shows "supp {} = {}" |
|
90 by (simp add: supp_def empty_eqvt) |
|
91 |
|
92 lemma fresh_set_empty: |
|
93 shows "a \<sharp> {}" |
|
94 by (simp add: fresh_def supp_set_empty) |
|
95 |
|
96 lemma UNIV_eqvt: |
|
97 shows "p \<bullet> UNIV = UNIV" |
|
98 unfolding UNIV_def Collect_eqvt True_eqvt .. |
|
99 |
|
100 lemma union_eqvt: |
|
101 shows "p \<bullet> (A \<union> B) = (p \<bullet> A) \<union> (p \<bullet> B)" |
|
102 unfolding Un_def Collect_eqvt disj_eqvt mem_eqvt by simp |
|
103 |
|
104 lemma inter_eqvt: |
|
105 shows "p \<bullet> (A \<inter> B) = (p \<bullet> A) \<inter> (p \<bullet> B)" |
|
106 unfolding Int_def Collect_eqvt conj_eqvt mem_eqvt by simp |
|
107 |
|
108 lemma Diff_eqvt: |
|
109 fixes A B :: "'a::pt set" |
|
110 shows "p \<bullet> (A - B) = p \<bullet> A - p \<bullet> B" |
|
111 unfolding set_diff_eq Collect_eqvt conj_eqvt Not_eqvt mem_eqvt by simp |
|
112 |
|
113 lemma Compl_eqvt: |
|
114 fixes A :: "'a::pt set" |
|
115 shows "p \<bullet> (- A) = - (p \<bullet> A)" |
|
116 unfolding Compl_eq_Diff_UNIV Diff_eqvt UNIV_eqvt .. |
|
117 |
|
118 lemma insert_eqvt: |
|
119 shows "p \<bullet> (insert x A) = insert (p \<bullet> x) (p \<bullet> A)" |
|
120 unfolding permute_set_eq_image image_insert .. |
|
121 |
|
122 lemma vimage_eqvt: |
|
123 shows "p \<bullet> (f -` A) = (p \<bullet> f) -` (p \<bullet> A)" |
|
124 unfolding vimage_def permute_fun_def [where f=f] |
|
125 unfolding Collect_eqvt mem_eqvt .. |
|
126 |
|
127 lemma image_eqvt: |
|
128 shows "p \<bullet> (f ` A) = (p \<bullet> f) ` (p \<bullet> A)" |
|
129 unfolding permute_set_eq_image |
|
130 unfolding permute_fun_def [where f=f] |
|
131 by (simp add: image_image) |
|
132 |
|
133 lemma finite_permute_iff: |
|
134 shows "finite (p \<bullet> A) \<longleftrightarrow> finite A" |
|
135 unfolding permute_set_eq_vimage |
|
136 using bij_permute by (rule finite_vimage_iff) |
|
137 |
|
138 lemma finite_eqvt: |
|
139 shows "p \<bullet> finite A = finite (p \<bullet> A)" |
|
140 unfolding finite_permute_iff permute_bool_def .. |
|
141 |
|
142 lemma supp_eqvt: "p \<bullet> supp S = supp (p \<bullet> S)" |
|
143 unfolding supp_def |
|
144 by (simp only: Collect_eqvt Not_eqvt finite_eqvt eq_eqvt |
|
145 permute_eqvt [of p] swap_eqvt permute_minus_cancel) |
|
146 |
|
147 |
|
148 section {* List Operations *} |
|
149 |
|
150 lemma append_eqvt: |
|
151 shows "p \<bullet> (xs @ ys) = (p \<bullet> xs) @ (p \<bullet> ys)" |
|
152 by (induct xs) auto |
|
153 |
|
154 lemma supp_append: |
|
155 shows "supp (xs @ ys) = supp xs \<union> supp ys" |
|
156 by (induct xs) (auto simp add: supp_Nil supp_Cons) |
|
157 |
|
158 lemma fresh_append: |
|
159 shows "a \<sharp> (xs @ ys) \<longleftrightarrow> a \<sharp> xs \<and> a \<sharp> ys" |
|
160 by (induct xs) (simp_all add: fresh_Nil fresh_Cons) |
|
161 |
|
162 lemma rev_eqvt: |
|
163 shows "p \<bullet> (rev xs) = rev (p \<bullet> xs)" |
|
164 by (induct xs) (simp_all add: append_eqvt) |
|
165 |
|
166 lemma supp_rev: |
|
167 shows "supp (rev xs) = supp xs" |
|
168 by (induct xs) (auto simp add: supp_append supp_Cons supp_Nil) |
|
169 |
|
170 lemma fresh_rev: |
|
171 shows "a \<sharp> rev xs \<longleftrightarrow> a \<sharp> xs" |
|
172 by (induct xs) (auto simp add: fresh_append fresh_Cons fresh_Nil) |
|
173 |
|
174 lemma set_eqvt: |
|
175 shows "p \<bullet> (set xs) = set (p \<bullet> xs)" |
|
176 by (induct xs) (simp_all add: empty_eqvt insert_eqvt) |
|
177 |
|
178 (* needs finite support premise |
|
179 lemma supp_set: |
|
180 fixes x :: "'a::pt" |
|
181 shows "supp (set xs) = supp xs" |
|
182 *) |
|
183 |
|
184 |
|
185 section {* Product Operations *} |
|
186 |
|
187 lemma fst_eqvt: |
|
188 "p \<bullet> (fst x) = fst (p \<bullet> x)" |
|
189 by (cases x) simp |
|
190 |
|
191 lemma snd_eqvt: |
|
192 "p \<bullet> (snd x) = snd (p \<bullet> x)" |
|
193 by (cases x) simp |
|
194 |
|
195 |
|
196 section {* Units *} |
|
197 |
|
198 lemma supp_unit: |
|
199 shows "supp () = {}" |
|
200 by (simp add: supp_def) |
|
201 |
|
202 lemma fresh_unit: |
|
203 shows "a \<sharp> ()" |
|
204 by (simp add: fresh_def supp_unit) |
|
205 |
|
206 section {* Equivariance automation *} |
|
207 |
|
208 text {* |
|
209 below is a construction site for a conversion that |
|
210 pushes permutations into a term as far as possible |
|
211 *} |
|
212 |
|
213 text {* Setup of the theorem attributes @{text eqvt} and @{text eqvt_force} *} |
|
214 |
|
215 use "nominal_thmdecls.ML" |
|
216 setup "NominalThmDecls.setup" |
|
217 |
|
218 lemmas [eqvt] = |
|
219 (* connectives *) |
|
220 eq_eqvt if_eqvt imp_eqvt disj_eqvt conj_eqvt Not_eqvt |
|
221 True_eqvt False_eqvt |
|
222 imp_eqvt [folded induct_implies_def] |
|
223 |
|
224 (* datatypes *) |
|
225 permute_prod.simps |
|
226 fst_eqvt snd_eqvt |
|
227 |
|
228 (* sets *) |
|
229 empty_eqvt UNIV_eqvt union_eqvt inter_eqvt |
|
230 Diff_eqvt Compl_eqvt insert_eqvt |
|
231 |
|
232 (* A simple conversion pushing permutations into a term *) |
|
233 |
|
234 ML {* |
|
235 fun OF1 thm1 thm2 = thm2 RS thm1 |
|
236 |
|
237 fun get_eqvt_thms ctxt = |
|
238 map (OF1 @{thm eq_reflection}) (NominalThmDecls.get_eqvt_thms ctxt) |
|
239 *} |
|
240 |
|
241 ML {* |
|
242 fun eqvt_conv ctxt ctrm = |
|
243 case (term_of ctrm) of |
|
244 (Const (@{const_name "permute"}, _) $ _ $ t) => |
|
245 (if is_Const (head_of t) |
|
246 then (More_Conv.rewrs_conv (get_eqvt_thms ctxt) |
|
247 then_conv eqvt_conv ctxt) ctrm |
|
248 else Conv.comb_conv (eqvt_conv ctxt) ctrm) |
|
249 | _ $ _ => Conv.comb_conv (eqvt_conv ctxt) ctrm |
|
250 | Abs _ => Conv.abs_conv (fn (_, ctxt) => eqvt_conv ctxt) ctxt ctrm |
|
251 | _ => Conv.all_conv ctrm |
|
252 *} |
|
253 |
|
254 ML {* |
|
255 fun eqvt_tac ctxt = |
|
256 CONVERSION (More_Conv.bottom_conv (fn ctxt => eqvt_conv ctxt) ctxt) |
|
257 *} |
|
258 |
|
259 lemma "p \<bullet> (A \<longrightarrow> B = (C::bool))" |
|
260 apply(tactic {* eqvt_tac @{context} 1 *}) |
|
261 oops |
|
262 |
|
263 text {* |
|
264 Another conversion for pushing permutations into a term. |
|
265 It is designed not to apply rules like @{term permute_pure} to |
|
266 applications or abstractions, only to constants or free |
|
267 variables. Thus permutations are not removed too early, and they |
|
268 have a chance to cancel with bound variables. |
|
269 *} |
|
270 |
|
271 definition |
|
272 "unpermute p = permute (- p)" |
|
273 |
|
274 lemma push_apply: |
|
275 fixes f :: "'a::pt \<Rightarrow> 'b::pt" and x :: "'a::pt" |
|
276 shows "p \<bullet> (f x) \<equiv> (p \<bullet> f) (p \<bullet> x)" |
|
277 unfolding permute_fun_def by simp |
|
278 |
|
279 lemma push_lambda: |
|
280 fixes f :: "'a::pt \<Rightarrow> 'b::pt" |
|
281 shows "p \<bullet> (\<lambda>x. f x) \<equiv> (\<lambda>x. p \<bullet> (f (unpermute p x)))" |
|
282 unfolding permute_fun_def unpermute_def by simp |
|
283 |
|
284 lemma push_bound: |
|
285 shows "p \<bullet> unpermute p x \<equiv> x" |
|
286 unfolding unpermute_def by simp |
|
287 |
|
288 ML {* |
|
289 structure PushData = Named_Thms |
|
290 ( |
|
291 val name = "push" |
|
292 val description = "push permutations" |
|
293 ) |
|
294 |
|
295 local |
|
296 |
|
297 fun push_apply_conv ctxt ct = |
|
298 case (term_of ct) of |
|
299 (Const (@{const_name "permute"}, _) $ _ $ (_ $ _)) => |
|
300 let |
|
301 val (perm, t) = Thm.dest_comb ct |
|
302 val (_, p) = Thm.dest_comb perm |
|
303 val (f, x) = Thm.dest_comb t |
|
304 val a = ctyp_of_term x; |
|
305 val b = ctyp_of_term t; |
|
306 val ty_insts = map SOME [b, a] |
|
307 val term_insts = map SOME [p, f, x] |
|
308 in |
|
309 Drule.instantiate' ty_insts term_insts @{thm push_apply} |
|
310 end |
|
311 | _ => Conv.no_conv ct |
|
312 |
|
313 fun push_lambda_conv ctxt ct = |
|
314 case (term_of ct) of |
|
315 (Const (@{const_name "permute"}, _) $ _ $ Abs _) => |
|
316 Conv.rewr_conv @{thm push_lambda} ct |
|
317 | _ => Conv.no_conv ct |
|
318 |
|
319 in |
|
320 |
|
321 fun push_conv ctxt ct = |
|
322 Conv.first_conv |
|
323 [ Conv.rewr_conv @{thm push_bound}, |
|
324 push_apply_conv ctxt |
|
325 then_conv Conv.comb_conv (push_conv ctxt), |
|
326 push_lambda_conv ctxt |
|
327 then_conv Conv.abs_conv (fn (v, ctxt) => push_conv ctxt) ctxt, |
|
328 More_Conv.rewrs_conv (PushData.get ctxt), |
|
329 Conv.all_conv |
|
330 ] ct |
|
331 |
|
332 fun push_tac ctxt = |
|
333 CONVERSION (More_Conv.bottom_conv (fn ctxt => push_conv ctxt) ctxt) |
|
334 |
|
335 end |
|
336 *} |
|
337 |
|
338 setup PushData.setup |
|
339 |
|
340 declare permute_pure [THEN eq_reflection, push] |
|
341 |
|
342 lemma push_eq [THEN eq_reflection, push]: |
|
343 "p \<bullet> (op =) = (op =)" |
|
344 by (simp add: expand_fun_eq permute_fun_def eq_eqvt) |
|
345 |
|
346 lemma push_All [THEN eq_reflection, push]: |
|
347 "p \<bullet> All = All" |
|
348 by (simp add: expand_fun_eq permute_fun_def all_eqvt) |
|
349 |
|
350 lemma push_Ex [THEN eq_reflection, push]: |
|
351 "p \<bullet> Ex = Ex" |
|
352 by (simp add: expand_fun_eq permute_fun_def ex_eqvt) |
|
353 |
|
354 lemma "p \<bullet> (A \<longrightarrow> B = (C::bool))" |
|
355 apply (tactic {* push_tac @{context} 1 *}) |
|
356 oops |
|
357 |
|
358 lemma "p \<bullet> (\<lambda>x. A \<longrightarrow> B x = (C::bool)) = foo" |
|
359 apply (tactic {* push_tac @{context} 1 *}) |
|
360 oops |
|
361 |
|
362 lemma "p \<bullet> (\<lambda>x y. \<exists>z. x = z \<and> x = y \<longrightarrow> z \<noteq> x) = foo" |
|
363 apply (tactic {* push_tac @{context} 1 *}) |
|
364 oops |
|
365 |
|
366 lemma "p \<bullet> (\<lambda>f x. f (g (f x))) = foo" |
|
367 apply (tactic {* push_tac @{context} 1 *}) |
|
368 oops |
|
369 |
|
370 end |