Nominal/Ex/CPS/CPS3_DanvyFilinski.thy
changeset 2998 f0fab367453a
parent 2984 1b39ba5db2c1
child 3089 9bcf02a6eea9
equal deleted inserted replaced
2997:132575f5bd26 2998:f0fab367453a
     5   CPS1 :: "lt \<Rightarrow> (lt \<Rightarrow> lt) \<Rightarrow> lt" ("_*_"  [100,100] 100)
     5   CPS1 :: "lt \<Rightarrow> (lt \<Rightarrow> lt) \<Rightarrow> lt" ("_*_"  [100,100] 100)
     6 and
     6 and
     7   CPS2 :: "lt \<Rightarrow> lt \<Rightarrow> lt" ("_^_" [100,100] 100)
     7   CPS2 :: "lt \<Rightarrow> lt \<Rightarrow> lt" ("_^_" [100,100] 100)
     8 where
     8 where
     9   "eqvt k \<Longrightarrow> (x~)*k = k (x~)"
     9   "eqvt k \<Longrightarrow> (x~)*k = k (x~)"
    10 | "eqvt k \<Longrightarrow> (M$N)*k = M*(%m. (N*(%n.((m $ n) $ (Abs c (k (c~)))))))"
    10 | "eqvt k \<Longrightarrow> (M$N)*k = M*(%m. (N*(%n.((m $ n) $ (Lam c (k (c~)))))))"
    11 | "eqvt k \<Longrightarrow> atom c \<sharp> (x, M) \<Longrightarrow> (Abs x M)*k = k (Abs x (Abs c (M^(c~))))"
    11 | "eqvt k \<Longrightarrow> atom c \<sharp> (x, M) \<Longrightarrow> (Lam x M)*k = k (Lam x (Lam c (M^(c~))))"
    12 | "\<not>eqvt k \<Longrightarrow> (CPS1 t k) = t"
    12 | "\<not>eqvt k \<Longrightarrow> (CPS1 t k) = t"
    13 | "(x~)^l = l $ (x~)"
    13 | "(x~)^l = l $ (x~)"
    14 | "(M$N)^l = M*(%m. (N*(%n.((m $ n) $ l))))"
    14 | "(M$N)^l = M*(%m. (N*(%n.((m $ n) $ l))))"
    15 | "atom c \<sharp> (x, M) \<Longrightarrow> (Abs x M)^l = l $ (Abs x (Abs c (M^(c~))))"
    15 | "atom c \<sharp> (x, M) \<Longrightarrow> (Lam x M)^l = l $ (Lam x (Lam c (M^(c~))))"
    16   apply (simp only: eqvt_def CPS1_CPS2_graph_def)
    16   apply (simp only: eqvt_def CPS1_CPS2_graph_def)
    17   apply (rule, perm_simp, rule)
    17   apply (rule, perm_simp, rule)
    18   apply auto
    18   apply auto
    19   apply (case_tac x)
    19   apply (case_tac x)
    20   apply (case_tac a)
    20   apply (case_tac a)
    29   apply blast
    29   apply blast
    30   apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh) 
    30   apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh) 
    31   apply (simp add: fresh_at_base Abs1_eq_iff)
    31   apply (simp add: fresh_at_base Abs1_eq_iff)
    32   apply blast
    32   apply blast
    33 --"-"
    33 --"-"
    34   apply (subgoal_tac "Abs c (ka (c~)) = Abs ca (ka (ca~))")
    34   apply (subgoal_tac "Lam c (ka (c~)) = Lam ca (ka (ca~))")
    35   apply (simp only:)
    35   apply (simp only:)
    36   apply (simp add: Abs1_eq_iff)
    36   apply (simp add: Abs1_eq_iff)
    37   apply (case_tac "c=ca")
    37   apply (case_tac "c=ca")
    38   apply simp_all[2]
    38   apply simp_all[2]
    39   apply rule
    39   apply rule
    47   apply (rule arg_cong)
    47   apply (rule arg_cong)
    48   back
    48   back
    49   apply simp
    49   apply simp
    50   apply (thin_tac "eqvt ka")
    50   apply (thin_tac "eqvt ka")
    51   apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh)
    51   apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh)
    52   apply (subgoal_tac "Abs c (CPS1_CPS2_sumC (Inr (M, c~))) = Abs a (CPS1_CPS2_sumC (Inr (M, a~)))")
    52   apply (subgoal_tac "Lam c (CPS1_CPS2_sumC (Inr (M, c~))) = Lam a (CPS1_CPS2_sumC (Inr (M, a~)))")
    53   prefer 2
    53   prefer 2
    54   apply (simp add: Abs1_eq_iff')
    54   apply (simp add: Abs1_eq_iff')
    55   apply (case_tac "c = a")
    55   apply (case_tac "c = a")
    56   apply simp_all[2]
    56   apply simp_all[2]
    57   apply rule
    57   apply rule
    58   apply (simp add: eqvt_at_def)
    58   apply (simp add: eqvt_at_def)
    59   apply (simp add: swap_fresh_fresh fresh_Pair_elim)
    59   apply (simp add: swap_fresh_fresh fresh_Pair_elim)
    60   apply (erule fresh_eqvt_at)
    60   apply (erule fresh_eqvt_at)
    61   apply (simp add: supp_Inr finite_supp)
    61   apply (simp add: supp_Inr finite_supp)
    62   apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
    62   apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
    63   apply (subgoal_tac "Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~))) = Abs a (CPS1_CPS2_sumC (Inr (Ma, a~)))")
    63   apply (subgoal_tac "Lam ca (CPS1_CPS2_sumC (Inr (Ma, ca~))) = Lam a (CPS1_CPS2_sumC (Inr (Ma, a~)))")
    64   prefer 2
    64   prefer 2
    65   apply (simp add: Abs1_eq_iff')
    65   apply (simp add: Abs1_eq_iff')
    66   apply (case_tac "ca = a")
    66   apply (case_tac "ca = a")
    67   apply simp_all[2]
    67   apply simp_all[2]
    68   apply rule
    68   apply rule
    83   apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
    83   apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
    84   apply (drule sym)
    84   apply (drule sym)
    85   apply (drule sym)
    85   apply (drule sym)
    86   apply (drule sym)
    86   apply (drule sym)
    87   apply (simp only:)
    87   apply (simp only:)
    88   apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (M, a~))) = Abs c (CPS1_CPS2_sumC (Inr (M, c~)))")
    88   apply (thin_tac "Lam a (CPS1_CPS2_sumC (Inr (M, a~))) = Lam c (CPS1_CPS2_sumC (Inr (M, c~)))")
    89   apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))")
    89   apply (thin_tac "Lam a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Lam ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))")
    90   apply (thin_tac "atom a \<sharp> (c, ca, x, xa, M, Ma)")
    90   apply (thin_tac "atom a \<sharp> (c, ca, x, xa, M, Ma)")
    91   apply (simp add: fresh_Pair_elim)
    91   apply (simp add: fresh_Pair_elim)
    92   apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]])
    92   apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]])
    93   back
    93   back
    94   back
    94   back
   131   apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2)
   131   apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2)
   132   apply (simp add: fresh_def supp_at_base)
   132   apply (simp add: fresh_def supp_at_base)
   133   apply (metis atom_eq_iff permute_swap_cancel2 swap_atom_simps(3))
   133   apply (metis atom_eq_iff permute_swap_cancel2 swap_atom_simps(3))
   134 --"-"
   134 --"-"
   135   apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh)
   135   apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh)
   136   apply (subgoal_tac "Abs c (CPS1_CPS2_sumC (Inr (M, c~))) = Abs a (CPS1_CPS2_sumC (Inr (M, a~)))")
   136   apply (subgoal_tac "Lam c (CPS1_CPS2_sumC (Inr (M, c~))) = Lam a (CPS1_CPS2_sumC (Inr (M, a~)))")
   137   prefer 2
   137   prefer 2
   138   apply (simp add: Abs1_eq_iff')
   138   apply (simp add: Abs1_eq_iff')
   139   apply (case_tac "c = a")
   139   apply (case_tac "c = a")
   140   apply simp_all[2]
   140   apply simp_all[2]
   141   apply rule
   141   apply rule
   142   apply (simp add: eqvt_at_def)
   142   apply (simp add: eqvt_at_def)
   143   apply (simp add: swap_fresh_fresh fresh_Pair_elim)
   143   apply (simp add: swap_fresh_fresh fresh_Pair_elim)
   144   apply (erule fresh_eqvt_at)
   144   apply (erule fresh_eqvt_at)
   145   apply (simp add: supp_Inr finite_supp)
   145   apply (simp add: supp_Inr finite_supp)
   146   apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
   146   apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
   147   apply (subgoal_tac "Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~))) = Abs a (CPS1_CPS2_sumC (Inr (Ma, a~)))")
   147   apply (subgoal_tac "Lam ca (CPS1_CPS2_sumC (Inr (Ma, ca~))) = Lam a (CPS1_CPS2_sumC (Inr (Ma, a~)))")
   148   prefer 2
   148   prefer 2
   149   apply (simp add: Abs1_eq_iff')
   149   apply (simp add: Abs1_eq_iff')
   150   apply (case_tac "ca = a")
   150   apply (case_tac "ca = a")
   151   apply simp_all[2]
   151   apply simp_all[2]
   152   apply rule
   152   apply rule
   167   apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
   167   apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
   168   apply (drule sym)
   168   apply (drule sym)
   169   apply (drule sym)
   169   apply (drule sym)
   170   apply (drule sym)
   170   apply (drule sym)
   171   apply (simp only:)
   171   apply (simp only:)
   172   apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (M, a~))) = Abs c (CPS1_CPS2_sumC (Inr (M, c~)))")
   172   apply (thin_tac "Lam a (CPS1_CPS2_sumC (Inr (M, a~))) = Lam c (CPS1_CPS2_sumC (Inr (M, c~)))")
   173   apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))")
   173   apply (thin_tac "Lam a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Lam ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))")
   174   apply (thin_tac "atom a \<sharp> (c, ca, x, xa, M, Ma)")
   174   apply (thin_tac "atom a \<sharp> (c, ca, x, xa, M, Ma)")
   175   apply (simp add: fresh_Pair_elim)
   175   apply (simp add: fresh_Pair_elim)
   176   apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]])
   176   apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]])
   177   back
   177   back
   178   back
   178   back
   240   apply simp_all
   240   apply simp_all
   241   apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh)
   241   apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh)
   242   apply simp
   242   apply simp
   243   done
   243   done
   244 
   244 
   245 lemma value_eq3' : "~isValue M \<Longrightarrow> eqvt k \<Longrightarrow> M*k = (M^(Abs n (k (Var n))))"
   245 lemma value_eq3' : "~isValue M \<Longrightarrow> eqvt k \<Longrightarrow> M*k = (M^(Lam n (k (Var n))))"
   246   by (cases M rule: lt.exhaust) auto
   246   by (cases M rule: lt.exhaust) auto
   247 
   247 
   248 
   248 
   249 
   249 
   250 end
   250 end