118   | 
   118   | 
   119 local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha1_equivp}, []), | 
   119 local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha1_equivp}, []), | 
   120   (build_equivps [@{term alpha_rtrm1}, @{term alpha_bp}] @{thm rtrm1_bp.induct} @{thm alpha_rtrm1_alpha_bp.induct} @{thms rtrm1.inject bp.inject} @{thms alpha1_inj} @{thms rtrm1.distinct bp.distinct} @{thms alpha_rtrm1.cases alpha_bp.cases} @{thms alpha1_eqvt} ctxt)) ctxt)) *} | 
   120   (build_equivps [@{term alpha_rtrm1}, @{term alpha_bp}] @{thm rtrm1_bp.induct} @{thm alpha_rtrm1_alpha_bp.induct} @{thms rtrm1.inject bp.inject} @{thms alpha1_inj} @{thms rtrm1.distinct bp.distinct} @{thms alpha_rtrm1.cases alpha_bp.cases} @{thms alpha1_eqvt} ctxt)) ctxt)) *} | 
   121 thm alpha1_equivp  | 
   121 thm alpha1_equivp  | 
   122   | 
   122   | 
   123 ML {*  | 
   123 local_setup  {* define_quotient_type [(([], @{binding trm1}, NoSyn), (@{typ rtrm1}, @{term alpha_rtrm1}))] | 
   124 fun define_quotient_type args tac ctxt =  | 
   124   (rtac @{thm alpha1_equivp(1)} 1) *} | 
   125 let  | 
         | 
   126   val mthd = Method.SIMPLE_METHOD tac  | 
         | 
   127   val mthdt = Method.Basic (fn _ => mthd)  | 
         | 
   128   val bymt = Proof.global_terminal_proof (mthdt, NONE)  | 
         | 
   129 in  | 
         | 
   130   bymt (Quotient_Type.quotient_type args ctxt)  | 
         | 
   131 end  | 
         | 
   132 *}  | 
         | 
   133   | 
         | 
   134 local_setup  {* define_quotient_type [(([], @{binding trm1}, NoSyn), (@{typ rtrm1}, @{term alpha_rtrm1}))]  | 
         | 
   135   (rtac @{thm alpha1_equivp(1)} 1) | 
         | 
   136 *}  | 
         | 
   137   | 
   125   | 
   138 local_setup {* | 
   126 local_setup {* | 
   139 (fn ctxt => ctxt  | 
   127 (fn ctxt => ctxt  | 
   140  |> snd o (Quotient_Def.quotient_lift_const ("Vr1", @{term rVr1})) | 
   128  |> snd o (Quotient_Def.quotient_lift_const ("Vr1", @{term rVr1})) | 
   141  |> snd o (Quotient_Def.quotient_lift_const ("Ap1", @{term rAp1})) | 
   129  |> snd o (Quotient_Def.quotient_lift_const ("Ap1", @{term rAp1})) | 
   143  |> snd o (Quotient_Def.quotient_lift_const ("Lt1", @{term rLt1})) | 
   131  |> snd o (Quotient_Def.quotient_lift_const ("Lt1", @{term rLt1})) | 
   144  |> snd o (Quotient_Def.quotient_lift_const ("fv_trm1", @{term fv_rtrm1}))) | 
   132  |> snd o (Quotient_Def.quotient_lift_const ("fv_trm1", @{term fv_rtrm1}))) | 
   145 *}  | 
   133 *}  | 
   146 print_theorems  | 
   134 print_theorems  | 
   147   | 
   135   | 
   148   | 
   136 local_setup {* prove_const_rsp @{binding fv_rtrm1_rsp} @{term fv_rtrm1} | 
   149 ML {* | 
   137   (fn _ => fv_rsp_tac @{thms alpha_rtrm1_alpha_bp.inducts} @{thms fv_rtrm1_fv_bp.simps} 1) *} | 
   150 fun const_rsp const lthy =  | 
   138 local_setup {* prove_const_rsp @{binding rVr1_rsp} @{term rVr1} | 
   151 let  | 
   139   (fn _ => constr_rsp_tac @{thms alpha1_inj} @{thms fv_rtrm1_rsp} @{thms alpha1_equivp} 1) *} | 
   152   val nty = fastype_of (Quotient_Term.quotient_lift_const ("", const) lthy) | 
   140 local_setup {* prove_const_rsp @{binding rAp1_rsp} @{term rAp1} | 
   153   val rel = Quotient_Term.equiv_relation_chk lthy (fastype_of const, nty);  | 
   141   (fn _ => constr_rsp_tac @{thms alpha1_inj} @{thms fv_rtrm1_rsp} @{thms alpha1_equivp} 1) *} | 
   154 in  | 
   142 local_setup {* prove_const_rsp @{binding rLm1_rsp} @{term rLm1} | 
   155   HOLogic.mk_Trueprop (rel $ const $ const)  | 
   143   (fn _ => constr_rsp_tac @{thms alpha1_inj} @{thms fv_rtrm1_rsp} @{thms alpha1_equivp} 1) *} | 
   156 end  | 
   144 local_setup {* prove_const_rsp @{binding rLt1_rsp} @{term rLt1} | 
   157 *}  | 
   145   (fn _ => constr_rsp_tac @{thms alpha1_inj} @{thms fv_rtrm1_rsp} @{thms alpha1_equivp} 1) *} | 
   158   | 
   146 local_setup {* prove_const_rsp @{binding permute_rtrm1_rsp} @{term "permute :: perm \<Rightarrow> rtrm1 \<Rightarrow> rtrm1"} | 
   159 (*local_setup {* | 
   147   (fn _ => asm_simp_tac (HOL_ss addsimps @{thms alpha1_eqvt}) 1) *} | 
   160 snd o Local_Theory.note ((Binding.empty, [Attrib.internal (fn _ => Quotient_Info.rsp_rules_add)]), @{thms refl}) *} *) | 
         | 
   161    | 
         | 
   162 prove fv_rtrm1_rsp': {* const_rsp @{term fv_rtrm1} @{context} *} | 
         | 
   163 by (tactic {* | 
         | 
   164   (rtac @{thm fun_rel_id} THEN' | 
         | 
   165   eresolve_tac @{thms alpha_rtrm1_alpha_bp.inducts} THEN_ALL_NEW | 
         | 
   166   asm_full_simp_tac (HOL_ss addsimps @{thms alpha_gen fv_rtrm1_fv_bp.simps})) 1 *}) | 
         | 
   167   | 
         | 
   168   | 
         | 
   169 lemmas fv_rtrm1_rsp = apply_rsp'[OF fv_rtrm1_rsp']  | 
         | 
   170   | 
         | 
   171 (* We need this since 'prove' doesn't support attributes *)  | 
         | 
   172 lemma [quot_respect]: "(alpha_rtrm1 ===> op =) fv_rtrm1 fv_rtrm1"  | 
         | 
   173   by (rule fv_rtrm1_rsp')  | 
         | 
   174   | 
         | 
   175 ML {* | 
         | 
   176 fun contr_rsp_tac inj rsp equivps =  | 
         | 
   177 let  | 
         | 
   178   val reflps = map (fn x => @{thm equivp_reflp} OF [x]) equivps | 
         | 
   179 in  | 
         | 
   180   REPEAT o rtac @{thm fun_rel_id} THEN' | 
         | 
   181   simp_tac (HOL_ss addsimps inj) THEN'  | 
         | 
   182   (TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI)) THEN_ALL_NEW  | 
         | 
   183   (asm_simp_tac HOL_ss THEN_ALL_NEW (  | 
         | 
   184    rtac @{thm exI[of _ "0 :: perm"]} THEN' | 
         | 
   185    asm_full_simp_tac (HOL_ss addsimps (rsp @ reflps @  | 
         | 
   186      @{thms alpha_gen fresh_star_def fresh_zero_perm permute_zero ball_triv})) | 
         | 
   187   ))  | 
         | 
   188 end  | 
         | 
   189 *}  | 
         | 
   190   | 
         | 
   191 ML {* | 
         | 
   192 fun remove_alls trm =  | 
         | 
   193 let  | 
         | 
   194   val fs = rev (map Free (strip_all_vars trm))  | 
         | 
   195 in  | 
         | 
   196   subst_bounds (fs, (strip_all_body trm))  | 
         | 
   197 end  | 
         | 
   198 *}  | 
         | 
   199   | 
         | 
   200 ML {* | 
         | 
   201 fun rsp_goal thy trm =  | 
         | 
   202 let  | 
         | 
   203   val goalstate = Goal.init (cterm_of thy trm);  | 
         | 
   204   val tac = REPEAT o rtac @{thm fun_rel_id}; | 
         | 
   205 in  | 
         | 
   206   case (SINGLE (tac 1) goalstate) of  | 
         | 
   207     NONE => error "rsp_goal failed"  | 
         | 
   208   | SOME th => remove_alls (term_of (cprem_of th 1))  | 
         | 
   209 end  | 
         | 
   210 *}  | 
         | 
   211   | 
         | 
   212 prove rAp1_rsp': {* rsp_goal @{theory} (const_rsp @{term rAp1} @{context}) *} | 
         | 
   213 by (tactic {* contr_rsp_tac @{thms alpha1_inj} @{thms fv_rtrm1_rsp} @{thms alpha1_equivp} 1 *}) | 
         | 
   214   | 
         | 
   215 thm apply_rsp'[OF apply_rsp'[OF rAp1_rsp']]  | 
         | 
   216   | 
         | 
   217   | 
         | 
   218 lemma [quot_respect]:  | 
         | 
   219  "(op = ===> alpha_rtrm1) rVr1 rVr1"  | 
         | 
   220  "(alpha_rtrm1 ===> alpha_rtrm1 ===> alpha_rtrm1) rAp1 rAp1"  | 
         | 
   221  "(op = ===> alpha_rtrm1 ===> alpha_rtrm1) rLm1 rLm1"  | 
         | 
   222  "(op = ===> alpha_rtrm1 ===> alpha_rtrm1 ===> alpha_rtrm1) rLt1 rLt1"  | 
         | 
   223 apply (tactic {* contr_rsp_tac @{thms alpha1_inj} @{thms fv_rtrm1_rsp} @{thms alpha1_equivp} 1 *})+ | 
         | 
   224 done  | 
         | 
   225   | 
         | 
   226   | 
   148   | 
   227 lemmas trm1_bp_induct = rtrm1_bp.induct[quot_lifted]  | 
   149 lemmas trm1_bp_induct = rtrm1_bp.induct[quot_lifted]  | 
   228 lemmas trm1_bp_inducts = rtrm1_bp.inducts[quot_lifted]  | 
   150 lemmas trm1_bp_inducts = rtrm1_bp.inducts[quot_lifted]  | 
   229   | 
   151   | 
   230 instantiation trm1 and bp :: pt  | 
   152 instantiation trm1 and bp :: pt  | 
   233 quotient_definition  | 
   155 quotient_definition  | 
   234   "permute_trm1 :: perm \<Rightarrow> trm1 \<Rightarrow> trm1"  | 
   156   "permute_trm1 :: perm \<Rightarrow> trm1 \<Rightarrow> trm1"  | 
   235 is  | 
   157 is  | 
   236   "permute :: perm \<Rightarrow> rtrm1 \<Rightarrow> rtrm1"  | 
   158   "permute :: perm \<Rightarrow> rtrm1 \<Rightarrow> rtrm1"  | 
   237   | 
   159   | 
   238 lemma [quot_respect]:  | 
         | 
   239   "(op = ===> alpha_rtrm1 ===> alpha_rtrm1) permute permute"  | 
         | 
   240   by (simp add: alpha1_eqvt)  | 
         | 
   241   | 
         | 
   242 lemmas permute_trm1[simp] = permute_rtrm1_permute_bp.simps[quot_lifted]  | 
   160 lemmas permute_trm1[simp] = permute_rtrm1_permute_bp.simps[quot_lifted]  | 
   243   | 
   161   | 
   244 instance  | 
   162 instance  | 
   245 apply default  | 
   163 apply default  | 
   246 apply(induct_tac [!] x rule: trm1_bp_inducts(1))  | 
   164 apply(induct_tac [!] x rule: trm1_bp_inducts(1))  | 
   247 apply(simp_all)  | 
   165 apply(simp_all)  | 
   248 done  | 
   166 done  | 
   249   | 
   167   | 
   250 end  | 
   168 end  | 
   251   | 
   169   | 
   252 lemmas fv_trm1 = fv_rtrm1_fv_bp.simps[quot_lifted]  | 
   170 lemmas  | 
   253   | 
   171     fv_trm1 = fv_rtrm1_fv_bp.simps[quot_lifted]  | 
   254 lemmas fv_trm1_eqvt = fv_rtrm1_eqvt[quot_lifted]  | 
   172 and fv_trm1_eqvt = fv_rtrm1_eqvt[quot_lifted]  | 
   255   | 
   173 and alpha1_INJ = alpha1_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen]  | 
   256 lemmas alpha1_INJ = alpha1_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen]  | 
         | 
   257   | 
   174   | 
   258 lemma lm1_supp_pre:  | 
   175 lemma lm1_supp_pre:  | 
   259   shows "(supp (atom x, t)) supports (Lm1 x t) "  | 
   176   shows "(supp (atom x, t)) supports (Lm1 x t) "  | 
   260 apply(simp add: supports_def)  | 
   177 apply(simp add: supports_def)  | 
   261 apply(fold fresh_def)  | 
   178 apply(fold fresh_def)  | 
   390   | 
   307   | 
   391 local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha2_equivp}, []), | 
   308 local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha2_equivp}, []), | 
   392   (build_equivps [@{term alpha_rtrm2}, @{term alpha_rassign}] @{thm rtrm2_rassign.induct} @{thm alpha_rtrm2_alpha_rassign.induct} @{thms rtrm2.inject rassign.inject} @{thms alpha2_inj} @{thms rtrm2.distinct rassign.distinct} @{thms alpha_rtrm2.cases alpha_rassign.cases} @{thms alpha2_eqvt} ctxt)) ctxt)) *} | 
   309   (build_equivps [@{term alpha_rtrm2}, @{term alpha_rassign}] @{thm rtrm2_rassign.induct} @{thm alpha_rtrm2_alpha_rassign.induct} @{thms rtrm2.inject rassign.inject} @{thms alpha2_inj} @{thms rtrm2.distinct rassign.distinct} @{thms alpha_rtrm2.cases alpha_rassign.cases} @{thms alpha2_eqvt} ctxt)) ctxt)) *} | 
   393 thm alpha2_equivp  | 
   310 thm alpha2_equivp  | 
   394   | 
   311   | 
   395   | 
   312 local_setup  {* define_quotient_type  | 
   396 quotient_type  | 
   313   [(([], @{binding trm2}, NoSyn), (@{typ rtrm2}, @{term alpha_rtrm2})), | 
   397   trm2 = rtrm2 / alpha_rtrm2  | 
   314    (([], @{binding assign}, NoSyn), (@{typ rassign}, @{term alpha_rassign}))] | 
   398 and  | 
   315   ((rtac @{thm alpha2_equivp(1)} 1) THEN (rtac @{thm alpha2_equivp(2)}) 1) *} | 
   399   assign = rassign / alpha_rassign  | 
         | 
   400   by (rule alpha2_equivp(1)) (rule alpha2_equivp(2))  | 
         | 
   401   | 
   316   | 
   402 local_setup {* | 
   317 local_setup {* | 
   403 (fn ctxt => ctxt  | 
   318 (fn ctxt => ctxt  | 
   404  |> snd o (Quotient_Def.quotient_lift_const ("Vr2", @{term rVr2})) | 
   319  |> snd o (Quotient_Def.quotient_lift_const ("Vr2", @{term rVr2})) | 
   405  |> snd o (Quotient_Def.quotient_lift_const ("Ap2", @{term rAp2})) | 
   320  |> snd o (Quotient_Def.quotient_lift_const ("Ap2", @{term rAp2})) | 
   408  |> snd o (Quotient_Def.quotient_lift_const ("As", @{term rAs})) | 
   323  |> snd o (Quotient_Def.quotient_lift_const ("As", @{term rAs})) | 
   409  |> snd o (Quotient_Def.quotient_lift_const ("fv_trm2", @{term fv_rtrm2})) | 
   324  |> snd o (Quotient_Def.quotient_lift_const ("fv_trm2", @{term fv_rtrm2})) | 
   410  |> snd o (Quotient_Def.quotient_lift_const ("bv2", @{term rbv2}))) | 
   325  |> snd o (Quotient_Def.quotient_lift_const ("bv2", @{term rbv2}))) | 
   411 *}  | 
   326 *}  | 
   412 print_theorems  | 
   327 print_theorems  | 
         | 
   328   | 
         | 
   329 (*local_setup {* prove_const_rsp @{binding fv_rtrm2_rsp} @{term fv_rtrm2} | 
         | 
   330   (fn _ => fv_rsp_tac @{thms alpha_rtrm2_alpha_rassign.inducts} @{thms fv_rtrm2_fv_rassign.simps} 1) *} *) | 
         | 
   331 lemma fv_rtrm2_rsp: "x \<approx>2 y \<Longrightarrow> fv_rtrm2 x = fv_rtrm2 y" sorry  | 
         | 
   332 lemma bv2_rsp: "x \<approx>2b y \<Longrightarrow> rbv2 x = rbv2 y" sorry  | 
         | 
   333   | 
         | 
   334 local_setup {* prove_const_rsp @{binding rVr2_rsp} @{term rVr2} | 
         | 
   335   (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp} @{thms alpha2_equivp} 1) *} | 
         | 
   336 local_setup {* prove_const_rsp @{binding rAp2_rsp} @{term rAp2} | 
         | 
   337   (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp} @{thms alpha2_equivp} 1) *} | 
         | 
   338 local_setup {* prove_const_rsp @{binding rLm2_rsp} @{term rLm2} | 
         | 
   339   (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp} @{thms alpha2_equivp} 1) *} | 
         | 
   340 local_setup {* prove_const_rsp @{binding rLt2_rsp} @{term rLt2} | 
         | 
   341   (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp bv2_rsp} @{thms alpha2_equivp} 1) *} | 
         | 
   342 local_setup {* prove_const_rsp @{binding permute_rtrm2_rsp} @{term "permute :: perm \<Rightarrow> rtrm2 \<Rightarrow> rtrm2"} | 
         | 
   343   (fn _ => asm_simp_tac (HOL_ss addsimps @{thms alpha2_eqvt}) 1) *} | 
   413   | 
   344   | 
   414   | 
   345   | 
   415 section {*** lets with many assignments ***} | 
   346 section {*** lets with many assignments ***} | 
   416   | 
   347   | 
   417 datatype rtrm3 =  | 
   348 datatype rtrm3 =  |