Nominal-General/Nominal2_Supp.thy
changeset 2388 ebf253d80670
parent 2372 06574b438b8f
child 2462 937b6088a3a0
equal deleted inserted replaced
2387:082d9fd28f89 2388:ebf253d80670
    56 
    56 
    57 lemma fresh_star_prod_elim: 
    57 lemma fresh_star_prod_elim: 
    58   shows "(a \<sharp>* (x, y) \<Longrightarrow> PROP C) \<equiv> (a \<sharp>* x \<Longrightarrow> a \<sharp>* y \<Longrightarrow> PROP C)"
    58   shows "(a \<sharp>* (x, y) \<Longrightarrow> PROP C) \<equiv> (a \<sharp>* x \<Longrightarrow> a \<sharp>* y \<Longrightarrow> PROP C)"
    59   by (rule, simp_all add: fresh_star_prod)
    59   by (rule, simp_all add: fresh_star_prod)
    60 
    60 
       
    61 lemma fresh_star_zero:
       
    62   shows "as \<sharp>* (0::perm)"
       
    63   unfolding fresh_star_def
       
    64   by (simp add: fresh_zero_perm)
       
    65 
    61 lemma fresh_star_plus:
    66 lemma fresh_star_plus:
    62   fixes p q::perm
    67   fixes p q::perm
    63   shows "\<lbrakk>a \<sharp>* p;  a \<sharp>* q\<rbrakk> \<Longrightarrow> a \<sharp>* (p + q)"
    68   shows "\<lbrakk>a \<sharp>* p;  a \<sharp>* q\<rbrakk> \<Longrightarrow> a \<sharp>* (p + q)"
    64   unfolding fresh_star_def
    69   unfolding fresh_star_def
    65   by (simp add: fresh_plus_perm)
    70   by (simp add: fresh_plus_perm)
       
    71 
    66 
    72 
    67 lemma fresh_star_permute_iff:
    73 lemma fresh_star_permute_iff:
    68   shows "(p \<bullet> a) \<sharp>* (p \<bullet> x) \<longleftrightarrow> a \<sharp>* x"
    74   shows "(p \<bullet> a) \<sharp>* (p \<bullet> x) \<longleftrightarrow> a \<sharp>* x"
    69   unfolding fresh_star_def
    75   unfolding fresh_star_def
    70   by (metis mem_permute_iff permute_minus_cancel(1) fresh_permute_iff)
    76   by (metis mem_permute_iff permute_minus_cancel(1) fresh_permute_iff)