|
1 theory QuotMain |
|
2 imports QuotScript QuotList |
|
3 begin |
|
4 |
|
5 locale QUOT_TYPE = |
|
6 fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool" |
|
7 and Abs :: "('a \<Rightarrow> bool) \<Rightarrow> 'b" |
|
8 and Rep :: "'b \<Rightarrow> ('a \<Rightarrow> bool)" |
|
9 assumes equiv: "EQUIV R" |
|
10 and rep_prop: "\<And>y. \<exists>x. Rep y = R x" |
|
11 and rep_inverse: "\<And>x. Abs (Rep x) = x" |
|
12 and abs_inverse: "\<And>x. (Rep (Abs (R x))) = (R x)" |
|
13 and rep_inject: "\<And>x y. (Rep x = Rep y) = (x = y)" |
|
14 begin |
|
15 |
|
16 definition |
|
17 "ABS x \<equiv> Abs (R x)" |
|
18 |
|
19 definition |
|
20 "REP a = Eps (Rep a)" |
|
21 |
|
22 lemma lem9: |
|
23 shows "R (Eps (R x)) = R x" |
|
24 proof - |
|
25 have a: "R x x" using equiv by (simp add: EQUIV_REFL_SYM_TRANS REFL_def) |
|
26 then have "R x (Eps (R x))" by (rule someI) |
|
27 then show "R (Eps (R x)) = R x" |
|
28 using equiv unfolding EQUIV_def by simp |
|
29 qed |
|
30 |
|
31 theorem thm10: |
|
32 shows "ABS (REP a) = a" |
|
33 unfolding ABS_def REP_def |
|
34 proof - |
|
35 from rep_prop |
|
36 obtain x where eq: "Rep a = R x" by auto |
|
37 have "Abs (R (Eps (Rep a))) = Abs (R (Eps (R x)))" using eq by simp |
|
38 also have "\<dots> = Abs (R x)" using lem9 by simp |
|
39 also have "\<dots> = Abs (Rep a)" using eq by simp |
|
40 also have "\<dots> = a" using rep_inverse by simp |
|
41 finally |
|
42 show "Abs (R (Eps (Rep a))) = a" by simp |
|
43 qed |
|
44 |
|
45 lemma REP_refl: |
|
46 shows "R (REP a) (REP a)" |
|
47 unfolding REP_def |
|
48 by (simp add: equiv[simplified EQUIV_def]) |
|
49 |
|
50 lemma lem7: |
|
51 "(R x = R y) = (Abs (R x) = Abs (R y))" |
|
52 apply(rule iffI) |
|
53 apply(simp) |
|
54 apply(drule rep_inject[THEN iffD2]) |
|
55 apply(simp add: abs_inverse) |
|
56 done |
|
57 |
|
58 theorem thm11: |
|
59 shows "R r r' = (ABS r = ABS r')" |
|
60 unfolding ABS_def |
|
61 by (simp only: equiv[simplified EQUIV_def] lem7) |
|
62 |
|
63 lemma QUOTIENT: |
|
64 "QUOTIENT R ABS REP" |
|
65 apply(unfold QUOTIENT_def) |
|
66 apply(simp add: thm10) |
|
67 apply(simp add: REP_refl) |
|
68 apply(subst thm11[symmetric]) |
|
69 apply(simp add: equiv[simplified EQUIV_def]) |
|
70 done |
|
71 |
|
72 end |
|
73 |
|
74 ML {* |
|
75 Variable.variant_frees |
|
76 *} |
|
77 |
|
78 |
|
79 section {* type definition for the quotient type *} |
|
80 |
|
81 ML {* |
|
82 (* constructs the term \<lambda>(c::ty\<Rightarrow>bool). \<exists>x. c = rel x *) |
|
83 fun typedef_term rel ty lthy = |
|
84 let |
|
85 val [x, c] = [("x", ty), ("c", ty --> @{typ bool})] |
|
86 |> Variable.variant_frees lthy [rel] |
|
87 |> map Free |
|
88 in |
|
89 lambda c |
|
90 ((HOLogic.exists_const ty) $ |
|
91 (lambda x (HOLogic.mk_eq (c, (rel $ x))))) |
|
92 end |
|
93 *} |
|
94 |
|
95 ML {* |
|
96 val typedef_tac = |
|
97 EVERY1 [rewrite_goal_tac @{thms mem_def}, |
|
98 rtac @{thm exI}, rtac @{thm exI}, rtac @{thm refl}] |
|
99 *} |
|
100 |
|
101 ML {* |
|
102 (* makes the new type definitions *) |
|
103 fun typedef_make (qty_name, rel, ty) lthy = |
|
104 LocalTheory.theory_result |
|
105 (TypedefPackage.add_typedef false NONE |
|
106 (qty_name, map fst (Term.add_tfreesT ty []), NoSyn) |
|
107 (typedef_term rel ty lthy) |
|
108 NONE typedef_tac) lthy |
|
109 *} |
|
110 |
|
111 text {* proves the QUOTIENT theorem for the new type *} |
|
112 ML {* |
|
113 fun typedef_quot_type_tac equiv_thm (typedef_info: TypedefPackage.info) = |
|
114 let |
|
115 val rep_thm = #Rep typedef_info |
|
116 val rep_inv = #Rep_inverse typedef_info |
|
117 val abs_inv = #Abs_inverse typedef_info |
|
118 val rep_inj = #Rep_inject typedef_info |
|
119 |
|
120 val ss = HOL_basic_ss addsimps @{thms mem_def} |
|
121 val rep_thm_simpd = Simplifier.asm_full_simplify ss rep_thm |
|
122 val abs_inv_simpd = Simplifier.asm_full_simplify ss abs_inv |
|
123 in |
|
124 EVERY1 [rtac @{thm QUOT_TYPE.intro}, |
|
125 rtac equiv_thm, |
|
126 rtac rep_thm_simpd, |
|
127 rtac rep_inv, |
|
128 rtac abs_inv_simpd, rtac @{thm exI}, rtac @{thm refl}, |
|
129 rtac rep_inj] |
|
130 end |
|
131 *} |
|
132 |
|
133 ML {* |
|
134 fun typedef_quot_type_thm (rel, abs, rep, equiv_thm, typedef_info) lthy = |
|
135 let |
|
136 val quot_type_const = Const (@{const_name "QUOT_TYPE"}, dummyT) |
|
137 val goal = HOLogic.mk_Trueprop (quot_type_const $ rel $ abs $ rep) |
|
138 |> Syntax.check_term lthy |
|
139 in |
|
140 Goal.prove lthy [] [] goal |
|
141 (fn _ => typedef_quot_type_tac equiv_thm typedef_info) |
|
142 end |
|
143 *} |
|
144 |
|
145 ML {* |
|
146 fun typedef_quotient_thm_tac defs quot_type_thm = |
|
147 EVERY1 [K (rewrite_goals_tac defs), |
|
148 rtac @{thm QUOT_TYPE.QUOTIENT}, |
|
149 rtac quot_type_thm] |
|
150 *} |
|
151 |
|
152 ML {* |
|
153 fun typedef_quotient_thm (rel, abs, rep, abs_def, rep_def, quot_type_thm) lthy = |
|
154 let |
|
155 val quotient_const = Const (@{const_name "QUOTIENT"}, dummyT) |
|
156 val goal = HOLogic.mk_Trueprop (quotient_const $ rel $ abs $ rep) |
|
157 |> Syntax.check_term lthy |
|
158 in |
|
159 Goal.prove lthy [] [] goal |
|
160 (fn _ => typedef_quotient_thm_tac [abs_def, rep_def] quot_type_thm) |
|
161 end |
|
162 *} |
|
163 |
|
164 text {* two wrappers for define and note *} |
|
165 ML {* |
|
166 fun make_def (name, mx, trm) lthy = |
|
167 let |
|
168 val ((trm, (_ , thm)), lthy') = |
|
169 LocalTheory.define Thm.internalK ((name, mx), (Attrib.empty_binding, trm)) lthy |
|
170 in |
|
171 ((trm, thm), lthy') |
|
172 end |
|
173 *} |
|
174 |
|
175 ML {* |
|
176 fun reg_thm (name, thm) lthy = |
|
177 let |
|
178 val ((_,[thm']), lthy') = LocalTheory.note Thm.theoremK ((name, []), [thm]) lthy |
|
179 in |
|
180 (thm',lthy') |
|
181 end |
|
182 *} |
|
183 |
|
184 ML {* |
|
185 fun typedef_main (qty_name, rel, ty, equiv_thm) lthy = |
|
186 let |
|
187 (* generates typedef *) |
|
188 val ((_,typedef_info), lthy') = typedef_make (qty_name, rel, ty) lthy |
|
189 |
|
190 (* abs and rep functions *) |
|
191 val abs_ty = #abs_type typedef_info |
|
192 val rep_ty = #rep_type typedef_info |
|
193 val abs_name = #Abs_name typedef_info |
|
194 val rep_name = #Rep_name typedef_info |
|
195 val abs = Const (abs_name, rep_ty --> abs_ty) |
|
196 val rep = Const (rep_name, abs_ty --> rep_ty) |
|
197 |
|
198 (* ABS and REP definitions *) |
|
199 val ABS_const = Const (@{const_name "QUOT_TYPE.ABS"}, dummyT ) |
|
200 val REP_const = Const (@{const_name "QUOT_TYPE.REP"}, dummyT ) |
|
201 val ABS_trm = Syntax.check_term lthy' (ABS_const $ rel $ abs) |
|
202 val REP_trm = Syntax.check_term lthy' (REP_const $ rep) |
|
203 val ABS_name = Binding.prefix_name "ABS_" qty_name |
|
204 val REP_name = Binding.prefix_name "REP_" qty_name |
|
205 val (((ABS, ABS_def), (REP, REP_def)), lthy'') = |
|
206 lthy' |> make_def (ABS_name, NoSyn, ABS_trm) |
|
207 ||>> make_def (REP_name, NoSyn, REP_trm) |
|
208 |
|
209 (* quot_type theorem *) |
|
210 val quot_thm = typedef_quot_type_thm (rel, abs, rep, equiv_thm, typedef_info) lthy'' |
|
211 val quot_thm_name = Binding.prefix_name "QUOT_TYPE_" qty_name |
|
212 |
|
213 (* quotient theorem *) |
|
214 val quotient_thm = typedef_quotient_thm (rel, ABS, REP, ABS_def, REP_def, quot_thm) lthy'' |
|
215 val quotient_thm_name = Binding.prefix_name "QUOTIENT_" qty_name |
|
216 |
|
217 in |
|
218 lthy'' |
|
219 |> reg_thm (quot_thm_name, quot_thm) |
|
220 ||>> reg_thm (quotient_thm_name, quotient_thm) |
|
221 end |
|
222 *} |
|
223 |
|
224 section {* various tests for quotient types*} |
|
225 datatype trm = |
|
226 var "nat" |
|
227 | app "trm" "trm" |
|
228 | lam "nat" "trm" |
|
229 |
|
230 consts R :: "trm \<Rightarrow> trm \<Rightarrow> bool" |
|
231 axioms r_eq: "EQUIV R" |
|
232 |
|
233 local_setup {* |
|
234 typedef_main (@{binding "qtrm"}, @{term "R"}, @{typ trm}, @{thm r_eq}) #> snd |
|
235 *} |
|
236 |
|
237 term Rep_qtrm |
|
238 term Abs_qtrm |
|
239 term ABS_qtrm |
|
240 term REP_qtrm |
|
241 thm QUOT_TYPE_qtrm |
|
242 thm QUOTIENT_qtrm |
|
243 thm Rep_qtrm |
|
244 |
|
245 text {* another test *} |
|
246 datatype 'a my = foo |
|
247 consts Rmy :: "'a my \<Rightarrow> 'a my \<Rightarrow> bool" |
|
248 axioms rmy_eq: "EQUIV Rmy" |
|
249 |
|
250 term "\<lambda>(c::'a my\<Rightarrow>bool). \<exists>x. c = Rmy x" |
|
251 |
|
252 datatype 'a trm' = |
|
253 var' "'a" |
|
254 | app' "'a trm'" "'a trm'" |
|
255 | lam' "'a" "'a trm'" |
|
256 |
|
257 consts R' :: "'a trm' \<Rightarrow> 'a trm' \<Rightarrow> bool" |
|
258 axioms r_eq': "EQUIV R'" |
|
259 |
|
260 local_setup {* |
|
261 typedef_main (@{binding "qtrm'"}, @{term "R'"}, @{typ "'a trm'"}, @{thm r_eq'}) #> snd |
|
262 *} |
|
263 |
|
264 term ABS_qtrm' |
|
265 term REP_qtrm' |
|
266 thm QUOT_TYPE_qtrm' |
|
267 thm QUOTIENT_qtrm' |
|
268 thm Rep_qtrm' |
|
269 |
|
270 text {* a test with lists of terms *} |
|
271 datatype t = |
|
272 vr "string" |
|
273 | ap "t list" |
|
274 | lm "string" "t" |
|
275 |
|
276 consts Rt :: "t \<Rightarrow> t \<Rightarrow> bool" |
|
277 axioms t_eq: "EQUIV Rt" |
|
278 |
|
279 local_setup {* |
|
280 typedef_main (@{binding "qt"}, @{term "Rt"}, @{typ "t"}, @{thm t_eq}) #> snd |
|
281 *} |
|
282 |
|
283 section {* lifting of constants *} |
|
284 |
|
285 text {* information about map-functions for type-constructor *} |
|
286 ML {* |
|
287 type typ_info = {mapfun: string} |
|
288 |
|
289 local |
|
290 structure Data = GenericDataFun |
|
291 (type T = typ_info Symtab.table |
|
292 val empty = Symtab.empty |
|
293 val extend = I |
|
294 fun merge _ = Symtab.merge (K true)) |
|
295 in |
|
296 val lookup = Symtab.lookup o Data.get |
|
297 fun update k v = Data.map (Symtab.update (k, v)) |
|
298 end |
|
299 *} |
|
300 |
|
301 (* mapfuns for some standard types *) |
|
302 setup {* |
|
303 Context.theory_map (update @{type_name "list"} {mapfun = @{const_name "map"}}) |
|
304 #> Context.theory_map (update @{type_name "*"} {mapfun = @{const_name "prod_fun"}}) |
|
305 #> Context.theory_map (update @{type_name "fun"} {mapfun = @{const_name "fun_map"}}) |
|
306 *} |
|
307 |
|
308 ML {* lookup (Context.Proof @{context}) @{type_name list} *} |
|
309 |
|
310 ML {* |
|
311 datatype abs_or_rep = abs | rep |
|
312 |
|
313 fun get_fun abs_or_rep rty qty lthy ty = |
|
314 let |
|
315 val qty_name = Long_Name.base_name (fst (dest_Type qty)) |
|
316 |
|
317 fun get_fun_aux s fs_tys = |
|
318 let |
|
319 val (fs, tys) = split_list fs_tys |
|
320 val (otys, ntys) = split_list tys |
|
321 val oty = Type (s, otys) |
|
322 val nty = Type (s, ntys) |
|
323 val ftys = map (op -->) tys |
|
324 in |
|
325 (case (lookup (Context.Proof lthy) s) of |
|
326 SOME info => (list_comb (Const (#mapfun info, ftys ---> oty --> nty), fs), (oty, nty)) |
|
327 | NONE => raise ERROR ("no map association for type " ^ s)) |
|
328 end |
|
329 |
|
330 fun get_const abs = (Const ("QuotMain.ABS_" ^ qty_name, rty --> qty), (rty, qty)) |
|
331 | get_const rep = (Const ("QuotMain.REP_" ^ qty_name, qty --> rty), (qty, rty)) |
|
332 in |
|
333 if ty = qty |
|
334 then (get_const abs_or_rep) |
|
335 else (case ty of |
|
336 TFree _ => (Abs ("x", ty, Bound 0), (ty, ty)) |
|
337 | Type (_, []) => (Abs ("x", ty, Bound 0), (ty, ty)) |
|
338 | Type (s, tys) => get_fun_aux s (map (get_fun abs_or_rep rty qty lthy) tys) |
|
339 | _ => raise ERROR ("no variables") |
|
340 ) |
|
341 end |
|
342 *} |
|
343 |
|
344 ML {* |
|
345 fun get_const_def nconst oconst rty qty lthy = |
|
346 let |
|
347 val ty = fastype_of nconst |
|
348 val (arg_tys, res_ty) = strip_type ty |
|
349 |
|
350 val fresh_args = arg_tys |> map (pair "x") |
|
351 |> Variable.variant_frees lthy [nconst, oconst] |
|
352 |> map Free |
|
353 |
|
354 val rep_fns = map (fst o get_fun rep rty qty lthy) arg_tys |
|
355 val abs_fn = (fst o get_fun abs rty qty lthy) res_ty |
|
356 |
|
357 in |
|
358 map (op $) (rep_fns ~~ fresh_args) |
|
359 |> curry list_comb oconst |
|
360 |> curry (op $) abs_fn |
|
361 |> fold_rev lambda fresh_args |
|
362 end |
|
363 *} |
|
364 |
|
365 ML {* |
|
366 fun exchange_ty rty qty ty = |
|
367 if ty = rty then qty |
|
368 else |
|
369 (case ty of |
|
370 Type (s, tys) => Type (s, map (exchange_ty rty qty) tys) |
|
371 | _ => ty) |
|
372 *} |
|
373 |
|
374 ML {* |
|
375 fun make_const_def nconst_name oconst mx rty qty lthy = |
|
376 let |
|
377 val oconst_ty = fastype_of oconst |
|
378 val nconst_ty = exchange_ty rty qty oconst_ty |
|
379 val nconst = Const (nconst_name, nconst_ty) |
|
380 val def_trm = get_const_def nconst oconst rty qty lthy |
|
381 in |
|
382 make_def (Binding.name nconst_name, mx, def_trm) lthy |
|
383 end |
|
384 *} |
|
385 |
|
386 text {* a test with functions *} |
|
387 datatype 'a t' = |
|
388 vr' "string" |
|
389 | ap' "('a t') * ('a t')" |
|
390 | lm' "'a" "string \<Rightarrow> ('a t')" |
|
391 |
|
392 consts Rt' :: "('a t') \<Rightarrow> ('a t') \<Rightarrow> bool" |
|
393 axioms t_eq': "EQUIV Rt'" |
|
394 |
|
395 local_setup {* |
|
396 typedef_main (@{binding "qt'"}, @{term "Rt'"}, @{typ "'a t'"}, @{thm t_eq'}) #> snd |
|
397 *} |
|
398 |
|
399 local_setup {* |
|
400 make_const_def "VR'" @{term "vr'"} NoSyn @{typ "'a t'"} @{typ "'a qt'"} #> snd |
|
401 *} |
|
402 |
|
403 local_setup {* |
|
404 make_const_def "AP'" @{term "ap'"} NoSyn @{typ "'a t'"} @{typ "'a qt'"} #> snd |
|
405 *} |
|
406 |
|
407 local_setup {* |
|
408 make_const_def "LM'" @{term "lm'"} NoSyn @{typ "'a t'"} @{typ "'a qt'"} #> snd |
|
409 *} |
|
410 |
|
411 thm VR'_def |
|
412 thm AP'_def |
|
413 thm LM'_def |
|
414 term LM' |
|
415 term VR' |
|
416 term AP' |
|
417 |
|
418 text {* finite set example *} |
|
419 |
|
420 inductive |
|
421 list_eq ("_ \<approx> _") |
|
422 where |
|
423 "a#b#xs \<approx> b#a#xs" |
|
424 | "[] \<approx> []" |
|
425 | "xs \<approx> ys \<Longrightarrow> ys \<approx> xs" |
|
426 | "a#a#xs \<approx> a#xs" |
|
427 | "xs \<approx> ys \<Longrightarrow> a#xs \<approx> a#ys" |
|
428 | "\<lbrakk>xs1 \<approx> xs2; xs2 \<approx> xs3\<rbrakk> \<Longrightarrow> xs1 \<approx> xs3" |
|
429 |
|
430 lemma list_eq_sym: |
|
431 shows "xs \<approx> xs" |
|
432 apply(induct xs) |
|
433 apply(auto intro: list_eq.intros) |
|
434 done |
|
435 |
|
436 lemma equiv_list_eq: |
|
437 shows "EQUIV list_eq" |
|
438 unfolding EQUIV_REFL_SYM_TRANS REFL_def SYM_def TRANS_def |
|
439 apply(auto intro: list_eq.intros list_eq_sym) |
|
440 done |
|
441 |
|
442 local_setup {* |
|
443 typedef_main (@{binding "fset"}, @{term "list_eq"}, @{typ "'a list"}, @{thm "equiv_list_eq"}) #> snd |
|
444 *} |
|
445 |
|
446 typ "'a fset" |
|
447 thm "Rep_fset" |
|
448 |
|
449 local_setup {* |
|
450 make_const_def "EMPTY" @{term "[]"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd |
|
451 *} |
|
452 |
|
453 term Nil |
|
454 term EMPTY |
|
455 |
|
456 local_setup {* |
|
457 make_const_def "INSERT" @{term "op #"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd |
|
458 *} |
|
459 |
|
460 term Cons |
|
461 term INSERT |
|
462 |
|
463 local_setup {* |
|
464 make_const_def "UNION" @{term "op @"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd |
|
465 *} |
|
466 |
|
467 term append |
|
468 term UNION |
|
469 thm QUOTIENT_fset |
|
470 thm Insert_def |
|
471 |
|
472 fun |
|
473 membship :: "'a \<Rightarrow> 'a list \<Rightarrow> bool" ("_ memb _") |
|
474 where |
|
475 m1: "(x memb []) = False" |
|
476 | m2: "(x memb (y#xs)) = ((x=y) \<or> (x memb xs))" |
|
477 |
|
478 |
|
479 local_setup {* |
|
480 make_const_def "IN" @{term "membship"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd |
|
481 *} |
|
482 |
|
483 term membship |
|
484 term IN |
|
485 |
|
486 lemma |
|
487 shows "IN x EMPTY = False" |
|
488 unfolding IN_def EMPTY_def |
|
489 apply(auto) |
|
490 thm Rep_fset_inverse |
|
491 |
|
492 |
|
493 |
|
494 |
|
495 |
|
496 |
|
497 |
|
498 |
|
499 |
|
500 |
|
501 text {* old stuff *} |
|
502 |
|
503 |
|
504 lemma QUOT_TYPE_qtrm_old: |
|
505 "QUOT_TYPE R Abs_qtrm Rep_qtrm" |
|
506 apply(rule QUOT_TYPE.intro) |
|
507 apply(rule r_eq) |
|
508 apply(rule Rep_qtrm[simplified mem_def]) |
|
509 apply(rule Rep_qtrm_inverse) |
|
510 apply(rule Abs_qtrm_inverse[simplified mem_def]) |
|
511 apply(rule exI) |
|
512 apply(rule refl) |
|
513 apply(rule Rep_qtrm_inject) |
|
514 done |
|
515 |
|
516 definition |
|
517 "ABS_qtrm_old \<equiv> QUOT_TYPE.ABS R Abs_qtrm" |
|
518 |
|
519 definition |
|
520 "REP_qtrm_old \<equiv> QUOT_TYPE.REP Rep_qtrm" |
|
521 |
|
522 lemma |
|
523 "QUOTIENT R (ABS_qtrm) (REP_qtrm)" |
|
524 apply(simp add: ABS_qtrm_def REP_qtrm_def) |
|
525 apply(rule QUOT_TYPE.QUOTIENT) |
|
526 apply(rule QUOT_TYPE_qtrm) |
|
527 done |
|
528 |
|
529 term "var" |
|
530 term "app" |
|
531 term "lam" |
|
532 |
|
533 definition |
|
534 "VAR x \<equiv> ABS_qtrm (var x)" |
|
535 |
|
536 definition |
|
537 "APP t1 t2 \<equiv> ABS_qtrm (app (REP_qtrm t1) (REP_qtrm t2))" |
|
538 |
|
539 definition |
|
540 "LAM x t \<equiv> ABS_qtrm (lam x (REP_qtrm t))" |
|
541 |
|
542 |
|
543 |
|
544 |
|
545 definition |
|
546 "VR x \<equiv> ABS_qt (vr x)" |
|
547 |
|
548 definition |
|
549 "AP ts \<equiv> ABS_qt (ap (map REP_qt ts))" |
|
550 |
|
551 definition |
|
552 "LM x t \<equiv> ABS_qt (lm x (REP_qt t))" |
|
553 |
|
554 (* for printing types *) |
|
555 ML {* |
|
556 fun setmp_show_all_types f = |
|
557 setmp show_all_types |
|
558 (! show_types orelse ! show_sorts orelse ! show_all_types) f |
|
559 *} |