equal
deleted
inserted
replaced
247 |
247 |
248 lemma "(\<lambda>(y :: my_int). y) = (\<lambda>(x :: my_int). x)" |
248 lemma "(\<lambda>(y :: my_int). y) = (\<lambda>(x :: my_int). x)" |
249 apply(lifting lam_tst3a) |
249 apply(lifting lam_tst3a) |
250 apply(rule impI) |
250 apply(rule impI) |
251 apply(rule lam_tst3a_reg) |
251 apply(rule lam_tst3a_reg) |
252 done |
252 apply(injection) |
|
253 sorry |
|
254 (* PROBLEM |
|
255 done*) |
253 |
256 |
254 lemma lam_tst3b: "(\<lambda>(y :: nat \<times> nat \<Rightarrow> nat \<times> nat). y) = (\<lambda>(x :: nat \<times> nat \<Rightarrow> nat \<times> nat). x)" |
257 lemma lam_tst3b: "(\<lambda>(y :: nat \<times> nat \<Rightarrow> nat \<times> nat). y) = (\<lambda>(x :: nat \<times> nat \<Rightarrow> nat \<times> nat). x)" |
255 by auto |
258 by auto |
256 |
259 |
257 lemma "(\<lambda>(y :: my_int => my_int). y) = (\<lambda>(x :: my_int => my_int). x)" |
260 lemma "(\<lambda>(y :: my_int => my_int). y) = (\<lambda>(x :: my_int => my_int). x)" |
258 apply(lifting lam_tst3b) |
261 apply(lifting lam_tst3b) |
259 apply(rule impI) |
262 apply(rule impI) |
260 apply(rule babs_rsp[OF fun_quotient[OF Quotient_my_int Quotient_my_int]]) |
263 apply(rule babs_rsp[OF fun_quotient[OF Quotient_my_int Quotient_my_int]]) |
261 apply(simp add: id_rsp) |
264 apply(simp add: id_rsp) |
262 done |
265 apply(injection) |
|
266 sorry |
|
267 (* PROBLEM |
|
268 done*) |
263 |
269 |
264 term map |
270 term map |
265 |
271 |
266 lemma lam_tst4: "map (\<lambda>x. my_plus x (0,0)) l = l" |
272 lemma lam_tst4: "map (\<lambda>x. my_plus x (0,0)) l = l" |
267 apply (induct l) |
273 apply (induct l) |