Nominal/Ex/Let.thy
changeset 2562 e8ec504dddf2
parent 2561 7926f1cb45eb
child 2617 e44551d067e6
equal deleted inserted replaced
2561:7926f1cb45eb 2562:e8ec504dddf2
    16   bn
    16   bn
    17 where
    17 where
    18   "bn ANil = []"
    18   "bn ANil = []"
    19 | "bn (ACons x t as) = (atom x) # (bn as)"
    19 | "bn (ACons x t as) = (atom x) # (bn as)"
    20 
    20 
    21 thm permute_bn_raw.simps
       
    22 
       
    23 thm at_set_avoiding2
    21 thm at_set_avoiding2
    24 thm trm_assn.fv_defs
    22 thm trm_assn.fv_defs
    25 thm trm_assn.eq_iff 
    23 thm trm_assn.eq_iff 
    26 thm trm_assn.bn_defs
    24 thm trm_assn.bn_defs
    27 thm trm_assn.perm_simps
    25 thm trm_assn.perm_simps
    29 thm trm_assn.inducts
    27 thm trm_assn.inducts
    30 thm trm_assn.distinct
    28 thm trm_assn.distinct
    31 thm trm_assn.supp
    29 thm trm_assn.supp
    32 thm trm_assn.fresh
    30 thm trm_assn.fresh
    33 thm trm_assn.exhaust[where y="t", no_vars]
    31 thm trm_assn.exhaust[where y="t", no_vars]
    34 
       
    35 quotient_definition
       
    36   "permute_bn :: perm \<Rightarrow> assn \<Rightarrow> assn"
       
    37 is
       
    38   "permute_bn_raw"
       
    39 
    32 
    40 lemmas permute_bn = permute_bn_raw.simps[quot_lifted]
    33 lemmas permute_bn = permute_bn_raw.simps[quot_lifted]
    41 
    34 
    42 lemma uu:
    35 lemma uu:
    43   shows "alpha_bn as (permute_bn p as)"
    36   shows "alpha_bn as (permute_bn p as)"